Skip to main content
Log in

A 3D neural network for moving microorganism extraction

  • Review
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Accurate detection and extraction of moving microorganisms from microscopic video streams is the first important step in biological wastewater treatment system. We propose a novel moving object extraction algorithm based on a 3D self-organizing neural network to overcome the prominent challenges in microorganism video sequences, such as error bootstrapping, dynamic background, variable motion, physical deformation and noise obscured. Firstly, we design a multilayer network topology instead of the traditional single-layer self-organizing map, which significantly improve the discrimination ability of moving objects. Secondly, new designed mechanisms related to background model initialization and adaptively update have effectively weakened the bootstrapping and ghost influences. Thirdly, we create buffer layers in neural network efficiently to resolve the dynamic background and variable motion problems. Finally, a simple Kalman predictor with constant coefficients has been constructed to tackle with the cases of microorganism being obscured or lost. Experimental results on real microscopic video sequences and comparisons with the state-of-the-art methods have demonstrated the accuracy of our proposed microorganism extraction algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Han YP, Liu JX, Guo XS, Li L (2012) Micro-environment characteristics and microbial communities in activated sludge flocs of different particle size. Bioresour Technol 124(11):252–258

    Article  Google Scholar 

  2. Zivkovic Z (2004) Improved adaptive Gaussian mixture model for background subtraction. In Proceedings of 17th International Conference on Pattern Recognition, pp. 28–31

  3. Lanza A, Di Stefano L (2011) Statistical change detection by the pool adjacent violators algorithm. IEEE Trans Pattern Anal Mach Intell 33(9):1894–1910

    Article  Google Scholar 

  4. Zivkovic Z, van der Heijden F (2006) Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn Lett 27(7):773–780

    Article  Google Scholar 

  5. Li W, Prasad S, Fowler JE (2014) Hyper spectral image classification using Gaussian mixture models and Markov fandom fields. IEEE Geosci Remote Sens Lett 11(1):153–157

    Article  Google Scholar 

  6. Bouwmans T, Baf FE, Vachon B (2008) Statistical background modeling for foreground detection: a survey. Handb Pattern Recognit Comput Vis 1(3):219–237

    Google Scholar 

  7. Baf FE, Bouwmans T, Vachon B (2008) Type-2 fuzzy mixture of Gaussians model: application to background modeling. In: Proceedings of 4th International Symposium on Advanced Visual Computing, pp 772–781

  8. Zhao Z, Bouwmans T, Zhang X, Fang Y (2012) A fuzzy background modeling approach for motion detection in dynamic backgrounds. In Proceedings of International Conference on Multimedia Signal Processing, pp 177–185

  9. Li W, Prasad S, Fowler JE (2014) Hyper spectral image classification using Gaussian mixture models and Markov random fields. IEEE Geosci Remote Sens Lett 11(1):153–157

    Article  Google Scholar 

  10. Shimada A, Nagahara H, Taniguchi R-I (2013) Background modeling based on bidirectional analysis. In: Proceedings of IEEE Conference on Computer Vision Pattern Recognition, pp 1979–1986

  11. Kim K, Chalidabhongse TH, Harwood D, Davis L (2005) Real-time foreground-background segmentation using codebook model. Real Time Image 11(3):172–185

    Article  Google Scholar 

  12. Barnich O, Droogenbroeck MV (2009) Vibe: a powerful random technique to estimate the background in video sequences. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, pp 945–948

  13. Shao Q, Tang ZX, Han SC (2013) Hierarchical CodeBook for background subtraction in MRF. Infrared Phys Technol 61:259–264

    Article  Google Scholar 

  14. Wu MJ, Peng XR (2010) Spatio-temporal context for codebook-based dynamic background subtraction. Int J Electron Commun 64(8):739–747

    Article  Google Scholar 

  15. Shah M, Deng JD, Woodford BJ (2015) A self-adaptive codebook (SACB) model for real-time background subtraction. Image Vis Comput 38:52–64

    Article  Google Scholar 

  16. Barnich O, Droogenbroeck MV (2011) Vibe: a universal background subtraction algorithm for video sequences. IEEE Trans Image Process 20(6):1709–1724

    Article  MathSciNet  MATH  Google Scholar 

  17. Yin CQ, Luo YQ, Zhang DQ (2014) A novel background subtraction for intelligent surveillance in wireless network. In: IEEE WCNC’14 Track 3 (Mobile and Wireless Networks), pp 2017–3021

  18. Ding X, He L, Carin L (2011) Bayesian robust principal component analysis. IEEE Trans Image Process 20(12):3419–3430

    Article  MathSciNet  MATH  Google Scholar 

  19. Yamazaki M, Xu G, Chen Y-W (2006) Detection of moving objects by independent component analysis. In: Proceedings of Asian Conference Computer Vision, pp 467–478

  20. Babacan SD, Luessi M, Molina R, Katsaggelos AK (2012) Sparse Bayesian methods for low-rank matrix estimation. IEEE Trans Signal Process 60(8):3964–3977

    Article  MathSciNet  Google Scholar 

  21. Candès EJ, Li X, Ma Y, Wright J (2011) Robust principal component analysis? J ACM 58(3):11:1–11:37

    Article  MathSciNet  MATH  Google Scholar 

  22. Bouwmans T, Zahzah EH (2014) Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance. Comput Vis Image Underst 122:22–34

    Article  Google Scholar 

  23. Culibrk D, Marques O, Socek D, Kalva H, Furht B (2007) Neural network approach to background modeling for video object segmentation. IEEE Trans Neural Netw 18(6):1614–1627

    Article  Google Scholar 

  24. Luque RM, Domínguez E, Palomo EJ, Muñoz J (2010) An ART-type network approach for video object detection. In: Proceedings of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), pp 423–428

  25. Rai NK, Chourasia S, Sethi A (2012) An efficient neural network based background subtraction method. In: Proceedings of 7th International Conference on Bio-Inspired Computing, Theories and Applications (BIC-TA), pp 453–460

  26. Maddalena L, Petrosino A (2008) A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans Image Process 17(7):1168–1177

    Article  MathSciNet  Google Scholar 

  27. Luque RM, Domínguez E, Palomo EJ, Muñoz J (2010) An ART-type network approach for video object detection. In: Proceedings of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), pp 423–428

  28. Cai X, Han G, Wang JK (2015) Background subtraction based on pulse coupled neural network. Appl Mech Mater 701–702:293–296

    Google Scholar 

  29. Feng XD, Zheng TZ (2011) Application of BP neural networks for moving target detection under complicated background. In: 2011 Chinese Control and Decision Conference (CCDC), Mianyang, China, pp 1357–1362

  30. Huang SC, Chen BH (2013) Highly accurate moving object detection in variable bit rate video-based traffic monitoring systems. IEEE Trans Neural Netw Learn Syst 24(12):1920–1931

    Article  Google Scholar 

  31. Huang SC, Chen BH (2014) Radial basis function based neural network for motion detection in dynamic scenes. IEEE Trans Cybern 44(1):114–125

    Article  Google Scholar 

  32. Venkatesan KGS, Khanaa V, Sriram M, Sri L (2015) An advanced moving object detection algorithm for automatic traffic monitoring in real-world limited bandwidth networks. Int J Innov Res Comput Commun Eng 3(3):2661–2668

    Google Scholar 

  33. Maddalena L, Petrosino A (2012) The SOBS algorithm: what are the limits? In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp 21–26

  34. Chacon MIM, Sergio GD, Javier VP (2009) Simplified SOM-neural model for video segmentation of moving objects. In Proceedings of International Joint Conference on Neural Networks (IJCNN), pp 474–480

  35. Chacon-Murguia MI, Gonzalez-Duarte S (2012) An adaptive neural fuzzy approach for object detection in dynamic backgrounds for surveillance systems. IEEE Trans Ind Electron 59(8):3286–3298

    Article  Google Scholar 

  36. Ramirez-Quintana JA, Chacon-Murguia MI (2013) Self-organizing retinotopic maps applied to background modeling for dynamic object segmentation in video sequences. In: Proceedings of International Joint Conference on Neural Networks (IJCNN), pp 1–8

  37. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11:3371–3408

    MathSciNet  MATH  Google Scholar 

  38. Zhao ZJ, Zhang XB, Fang YC (2015) Stacked multilayer self-organizing map for background modeling. IEEE Trans Image Process 24(9):1850–2841

    MathSciNet  Google Scholar 

  39. Rauber A, Merkl D, Dittenbach M (2002) The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data. IEEE Trans Neural Netw 13(6):1331–1341

    Article  MATH  Google Scholar 

  40. Maddalena L, Petrosino A (2014) The 3dSOBS+ algorithm for moving object detection. Comput Vis Image Underst 122(2014):65–73

    Article  Google Scholar 

  41. Burt P (1981) Fast filter transform for image processing. Comput Graphics Image Process 16(1981):20–51

    Article  Google Scholar 

  42. Marques M, Costeira J (2009) Estimating 3D shape from degenerate sequences with missing data. Comput Vis Image Underst 113(2):261–272

    Article  Google Scholar 

  43. Herrero S, Bescós J (2009) Background subtraction techniques: systematic evaluation and comparative analysis. In: 11th International Conference on Advanced Concepts for Intelligent Vision Systems, Bordeaux, France, pp 33–42

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 61601004, 51307003, 51574004, 61472282), the Anhui Natural Science Key Research Project for Universities (Nos. KJ2012A040, 1508085MF129) and the Teaching Research Project of Anhui University of Technology under Grant No. 2013jy25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tin-Yu Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Wu, TY., Liu, J. et al. A 3D neural network for moving microorganism extraction. Neural Comput & Applic 30, 57–67 (2018). https://doi.org/10.1007/s00521-016-2808-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2808-4

Keywords

Navigation