Skip to main content
Log in

An adaptive particle swarm optimization method based on clustering

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Particle swarm optimization (PSO) is an effective method for solving a wide range of problems. However, the most existing PSO algorithms easily trap into local optima when solving complex multimodal function optimization problems. This paper presents a variation, called adaptive PSO based on clustering (APSO-C), by considering the population topology and individual behavior control together to balance local and global search in an optimization process. APSO-C has two steps. First, via a K-means clustering operation, it divides the swarm dynamically in the whole process to construct variable subpopulation clusters and after that adopts a ring neighborhood topology for information sharing among these clusters. Then, an adaption mechanism is proposed to adjust the inertia weight of all individuals based on the evaluation results of the states of clusters and the swarm, thereby giving the individual suitable search power. The experimental results of fourteen benchmark functions show that APSO-C has better performance in the terms of convergence speed, solution accuracy and algorithm reliability than several other PSO algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alatas B, Akin E, Ozer AB (2009) Chaos embedded particle swarm optimization algorithms. Chaos Soliton Fract 40(4):1715–1734

    Article  MATH  MathSciNet  Google Scholar 

  • Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm optimization. Part I: background and development. Nat Comp Ser 6(4):467–484

    Article  MATH  MathSciNet  Google Scholar 

  • Brits R, Engelbrecht AP, Van den Bergh F (2002) A niching particle swarm optimizer. In: Proceedings of the 4th Asia-Pacific conference on simulated evolution and learning, Orchid Country Club, Singapore, vol 2, pp 692–696

  • Chander A, Chatterjee A, Siarry P (2011) A new social and momentum component adaptive PSO algorithm for image segmentation. Expert Syst Appl 38(5):4998–5004

    Article  Google Scholar 

  • Chen D, Zhao C (2009) Particle swarm optimization with adaptive population size and its application. Appl Soft Comput 9(1):39–48

    Article  Google Scholar 

  • Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73

    Article  Google Scholar 

  • Daneshyari M, Yen GG (2011) Cultural-based multiobjective particle swarm optimization. IEEE Trans Syst Man Cybern B 41(2):553–567

    Article  Google Scholar 

  • Dong W, Zhou M (2014) Gaussian classifier-based evolutionary strategy for multimodal optimization. to appear in IEEE Trans Neural Networ Learn Syst

  • Eberhart RC, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation, IEEE, vol 1, pp 84–88

  • Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995, IEEE, pp 39–43

  • Fang Y, Chu F, Mammar S, Zhou M (2012) Optimal lane reservation in transportation network. IEEE Trans Intell Trans Syst 13(2):482–491

    Google Scholar 

  • Ge HW, Sun L, Liang YC, Qian F (2008) An effective PSO and AIS-based hybrid intelligent algorithm for job-shop scheduling. IEEE Trans Syst Man Cybern A 38(2):358–368

    Article  Google Scholar 

  • Grimaldi EA, Grimaccia F, Mussetta M, Zich R (2004) PSO as an effective learning algorithm for neural network applications. In: Proceedings of 2004 3rd International Conference on Computational Electromagnetics and Its Applications, IEEE, pp 557–560

  • Holden N, Freitas AA (2005) A hybrid particle swarm/ant colony algorithm for the classification of hierarchical biological data. In: Proceedings 2005 IEEE Swarm Intelligence Symposium, IEEE, pp 100–107

  • Hsieh ST, Sun TY, Liu CC, Tsai SJ (2009) Efficient population utilization strategy for particle swarm optimizer. IEEE Trans Syst Man Cybern B 39(2):444–456

    Article  Google Scholar 

  • Jie J, Zeng J, Han C, Wang Q (2008) Knowledge-based cooperative particle swarm optimization. Appl Math Comput 205(2):861–873

    Article  MATH  MathSciNet  Google Scholar 

  • Kang Q, Lan T, Yan Y, Wang L, Wu Q (2012a) Group search optimizer based optimal location and capacity of distributed generations. Neurocomputing 78(1):55–63

    Article  Google Scholar 

  • Kang Q, Zhou M, Xu C (2012b) Solving optimal power flow problems subject to distributed generator failures via particle swarm intelligence. In: 2012 International Conference on Advanced Mechatronic Systems (ICAMechS), IEEE, pp 418–423

  • Kang Q, Zhou M, An J, Wu Q (2013) Swarm intelligence approaches to optimal power flow problem with distributed generator failures in power networks. IEEE Trans Autom Sci Eng 10(2):343–353. doi:10.1109/TASE.2012.2204980

    Article  Google Scholar 

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471

    Article  MATH  MathSciNet  Google Scholar 

  • Kennedy J (1997) The particle swarm: social adaptation of knowledge. In: IEEE International Conference on Evolutionary Computation, 1997, IEEE, pp 303–308

  • Kennedy J (1999) Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 99, IEEE, vol 3

  • Kennedy J (2000) Stereotyping: improving particle swarm performance with cluster analysis. In: Proceedings of the 2000 Congress on Evolutionary Computation, IEEE, vol 2, pp 1507–1512

  • Kennedy J, Mendes R (2006) Neighborhood topologies in fully informed and best-of-neighborhood particle swarms. IEEE Trans Syst Man Cybern C 36(4):515–519

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, 1995, IEEE, vol 4, pp 1942–1948

  • Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proceedings of the 2002 Congress on Evolutionary Computation, IEEE, vol 2, pp 1671–1676

  • Khouadjia MR, Sarasola B, Alba E, Jourdan L, Talbi EG (2012) A comparative study between dynamic adapted PSO and VNS for the vehicle routing problem with dynamic requests. Appl Soft Comput 12(4):1426–1439

    Article  Google Scholar 

  • Lanzarini L, Leza V, Giusti A (2006) Particle swarm optimization with variable population size. In: Proceedings of the 9th international conference on Artificial Intelligence and Soft Computing, Springer-Verlag, Berlin, pp 438–449

  • Leong WF, Yen GG (2008) PSO-based multiobjective optimization with dynamic population size and adaptive local archives. IEEE Trans Syst Man Cybern B 38(5):1270–1293

    Article  Google Scholar 

  • Li X (2004) Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function optimization. In: Genetic and Evolutionary Computation-GECCO 2004, Springer, Berlin, pp 105–116

  • Li X (2010) Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Trans Evol Comput 14(1):150–169

    Article  Google Scholar 

  • Li S, Tan M, Tsang IW, Kwok JY (2011) A hybrid PSO-BFGS strategy for global optimization of multimodal functions. IEEE Trans Syst Man Cybern B 41(4):1003–1014

    Article  Google Scholar 

  • Li Y, Xiang R, Jiao L, Liu R (2012) An improved cooperative quantum-behaved particle swarm optimization. Soft Comput 16(6):1061–1069

    Article  Google Scholar 

  • Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Google Scholar 

  • Liu Y, Lv M, Zuo W (2012) A new multimodal particle swarm optimization algorithm based on greedy algorithm. Int J Comput Intell Appl 11(03)

  • Madeiro SS, Bastos-Filho CJA, Neto FBL, Figueiredo EMN (2009)Adaptative clustering particle swarm optimization. In: IEEE International Symposium on Parallel & Distributed Processing, pp 1–8

  • Mandal S, Kar R, Mandal D, Ghoshal SP (2011) Swarm intelligence based optimal linear phase FIR high pass filter design using particle swarm optimization with constriction factor and inertia weight approach. Int J Electr Electron Eng 5(4):296–301

    Google Scholar 

  • Marinakis Y, Marinaki M (2013) Particle swarm optimization with expanding neighborhood topology for the permutation flowshop scheduling problem. Soft Comput 17(7):1159–1173

    Article  Google Scholar 

  • Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Trans Evol Comput 8(3):204–210

    Article  Google Scholar 

  • Mendes R, Kennedy J, Neves J (2003) Watch thy neighbor or how the swarm can learn from its environment. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium, IEEE, pp 88–94

  • Montes de Oca M, Aydn D, Sttzle T (2011a) An incremental particle swarm for large-scale continuous optimization problems: an example of tuning-in-the-loop (re)design of optimization algorithms. Soft Comput 15(11):2233–2255. doi:10.1007/s00500-010-0649-0

    Article  Google Scholar 

  • Montes de Oca M, Stutzle T, Van den Enden K, Dorigo M (2011b) Incremental social learning in particle swarms. IEEE Trans Syst Man Cybern B 41(2):368–384

    Article  Google Scholar 

  • Nasir M, Das S, Maity D, Sengupta S, Halder U, Suganthan PN (2012) A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Inform Sci 209:16–36

    Article  MathSciNet  Google Scholar 

  • Passaro A, Starita A (2006) Clustering particles for multimodal function optimization. In: Proceedings of ECAI Workshop on Evolutionary Computation, pp 124–131

  • Rada-Vilela J, Zhang M, Seah W (2013) A performance study on synchronicity and neighborhood size in particle swarm optimization. Soft Comput pp 1–12

  • Shi Y, Eberhart R (1998a) A modified particle swarm optimizer. In: Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence, IEEE, pp 69–73

  • Shi Y, Eberhart RC (1998b) Parameter selection in particle swarm optimization. In: Evolutionary Programming VII, Springer, pp 591–600

  • Shi Y, Eberhart RC (2001) Fuzzy adaptive particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation 2001, vol 1. IEEE, pp 101–106

  • Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  • Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL, Report 2005005

  • Sun J, Fang W, Palade V, Wu X, Xu W (2011) Quantum-behaved particle swarm optimization with gaussian distributed local attractor point. Appl Math Comput 218(7):3763–3775

    Article  MATH  Google Scholar 

  • Wu NQ, Zhou MC (2007) Shortest routing of bidirectional automated guided vehicles avoiding deadlock and blocking. IEEE/ASME Trans Mechatron 12(1):63–72

    Google Scholar 

  • Xing K, Han L, Zhou M (2012) Deadlock-free genetic scheduling algorithm for automated manufacturing systems based on deadlock control policy. IEEE Trans Syst Man Cybern B 42(3):603–615

    Google Scholar 

  • Xiong PC, Fan Y, Zhou MC (2009) Web service configuration under multiple quality-of-service attributes. IEEE Trans Autom Sci Eng 6(2):311–321

    Google Scholar 

  • Yang XS (2010) Firefly algorithm, lévy flights and global optimization. Research and development in intelligent systems XXVI pp 209–218

  • Yu M, Zhou MC, Su W (2009) A secure routing protocol against Byzantine attacks for MANETs in adversarial environments. IEEE Trans Veh Technol 58(1):449–460

    Google Scholar 

  • Zhan ZH, Zhang J, Li Y, Chung HH (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern B 39(6):1362–1381

    Article  Google Scholar 

  • Zhang C, Yi Z (2011) Scale-free fully informed particle swarm optimization algorithm. Inform Sci 181(20):4550–4568

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Key Program of Natural Science Foundation of Hubei Province (No. 2010CDA022), the international cooperation project of Hubei province (No. 2011BFA012), National Natural Science Foundation of China (No. 71372202), the national key Technology Research and Development Program (Nos. 2012BAJ05B07 and 2014BAH24F03), the PRC Ministry of Science and Technology under Contract No. 2013DFM10100, the Fundamental Research Funds for the Central Universities (WUT: 2013-IV-057), and the Opening Project of Traffic Transport Industry Key Laboratory of Port Handing Technology (No. 2013-gkzx-k-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfeng Li.

Additional information

Communicated by W. Pedrycz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Li, W., Zhang, Y. et al. An adaptive particle swarm optimization method based on clustering. Soft Comput 19, 431–448 (2015). https://doi.org/10.1007/s00500-014-1262-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-014-1262-4

Keywords

Navigation