Skip to main content
Log in

The Minimum Feasible Tileset Problem

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We introduce and study the Minimum Feasible Tileset problem: given a set of symbols and subsets of these symbols (scenarios), find a smallest possible number of pairs of symbols (tiles) such that each scenario can be formed by selecting at most one symbol from each tile. We show that this problem is \(\mathsf {APX}\)-hard and that it is \(\mathsf {NP}\)-hard even if each scenario contains at most three symbols. Our main result is a 4/3-approximation algorithm for the general case. In addition, we show that the Minimum Feasible Tileset problem is fixed-parameter tractable both when parameterized with the number of scenarios and with the number of symbols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Recall that \(\mathcal {O}^*\)-notation ignores factors that are polynomial in the input size.

  2. A compression to \(\mathcal {O}(|F|^d)\) size can be achieved by specifying one bit for each possible scenario in \(\mathcal {S} \) and setting it to one if the scenario is present and zero otherwise.

  3. Dell and Marx called this problem Perfect d-Set Matching.

References

  1. Bansal, N., Caprara, A., Sviridenko, M.: A new approximation method for set covering problems, with applications to multidimensional bin packing. SIAM J. Comput. 39(4), 1256–1278 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bezzo, N., Cortez, R.A., Fierro, R.: Exploiting heterogeneity in robotic networks. In: Redundancy in Robot Manipulators and Multi-Robot Systems. Lecture Notes in Electrical Engineering, vol. 57, pp. 53–75. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33971-4_4

    Chapter  Google Scholar 

  3. Biedl, T., Chan, T., Ganjali, Y., Hajiaghayi, M., Wood, D.: Balanced vertex-orderings of graphs. Discrete Appl. Math. 148(1), 27–48 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buchin, K., van Kreveld, M.J., Meijer, H., Speckmann, B., Verbeek, K.: On planar supports for hypergraphs. J. Graph Algorithms Appl. 15(4), 533–549 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J., Komusiewicz, C., Niedermeier, R., Sorge, M., Suchý, O., Weller, M.: Polynomial-time data reduction for the subset interconnection design problem. SIAM J. Discrete Math. 29(1), 1–25 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Crescenzi, P.: A short guide to approximation preserving reductions. In: Proceedings of the Twelfth Annual IEEE Conference on Computational Complexity (CCC)

  7. Cygan., M.: Improved approximation for 3-dimensional matching via bounded pathwidth local search. In: Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 509–518 (2013)

  8. Dell, H., Marx, D.: Kernelization of packing problems. In: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 68–81 (2012)

  9. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. J. ACM 61(4), 23:1–23:27 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Disser, Y., Kratsch, S., Sorge, M.: The minimum feasible tileset problem. In: Proceedings of the 12th Workshop on Approximation and Online Algorithms (WAOA ’14), LNCS, vol. 8952, pp. 144–155. Springer, Heidelberg (2014)

  11. Disser, Y., Matuschke, J.: Degree-constrained orientations of embedded graphs. J. Comb. Optim. 31(2), 758–773 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Du, D.-Z., Miller, Z.: Matroids and subset interconnection design. SIAM J. Discrete Math. 1(4), 416–424 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)

    MATH  Google Scholar 

  14. Frank, A., Gyárfás, A.: How to orient the edges of a graph. Coll. Math. Soc. Janos Bolyai 18, 353–364 (1976)

    MathSciNet  Google Scholar 

  15. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W.H Freeman and Company, San Francisco (1979)

    MATH  Google Scholar 

  17. Gottlob, G., Greco, G.: Decomposing combinatorial auctions and set packing problems. J. ACM 60(4), 24 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hakimi, S.: On the degrees of the vertices of a directed graph. J. Frankl. Inst. 279(4), 290–308 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  19. Johnson, D.S., Pollak, H.O.: Hypergraph planarity and the complexity of drawing Venn diagrams. J. Graph Theory 11(3), 309–325 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kann, V.: Maximum bounded 3-dimensional matching is MAX SNP-complete. Inf. Process. Lett. 37(1), 27–35 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12, 415–440 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Proceedings of the 35th International Colloquium on Automata (ICALP), pp. 575–586 (2008)

  23. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lundh, R., Karlsson, L., Saffiotti, A.: Autonomous functional configuration of a network robot system. Robot. Auton. Syst. 56(10), 819–830 (2008)

    Article  Google Scholar 

  25. Marek, C., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)

    MATH  Google Scholar 

  26. Mittal, S.: A survey of techniques for architecting and managing asymmetric multicore processors. ACM Comput. Surv. 48(3), 1–38 (2016)

    Article  Google Scholar 

  27. Reinhard, D.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 5th edn. Springer, Berlin (2016)

    Google Scholar 

  28. Rodney, G., Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, Berlin (2013)

    MATH  Google Scholar 

  29. Schuurman, P., Woeginger, G.J.: Approximation schemes—a tutorial. http://www.win.tue.nl/~gwoegi/papers/ptas.pdf

  30. Sviridenko, M., Ward, J.: Large neighborhood local search for the maximum set packing problem. In: 40th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 792–803 (2013)

  31. van Bevern, R., Kanj, I., Komusiewicz, C., Niedermeier, R., Sorge,M.: Twins in subdivision drawings of hypergraphs. In: Proceedings of the 24th International Symposium on Graph Drawing & Network Visualization, LNCS, vol. 9801, pp. 67–80. Springer, Heidelberg (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Sorge.

Additional information

An extended abstract of this article appeared at the 12th Workshop on Approximation and Online Algorithms, Wrocław, September 2014 [10]. In comparison, apart from full proof details, the present article additionally contains examples and an APX-hardness proof. The authors gratefully acknowledge support by the Alexander von Humboldt-Foundation (Yann Disser), the ‘Excellence Initiative’ of the German Federal and State Governments and the Graduate School CE at TU Darmstadt (Yann Disser), the German Research Foundation (DFG), Projects KR 4286/1 (Stefan Kratsch) and NI 369/12 (Manuel Sorge), the Israel Science Foundation, Grant No. 551145/14 (Manuel Sorge), and the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement Number 631163.11 (Manuel Sorge).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Disser, Y., Kratsch, S. & Sorge, M. The Minimum Feasible Tileset Problem. Algorithmica 81, 1126–1151 (2019). https://doi.org/10.1007/s00453-018-0460-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-018-0460-3

Keywords

Navigation