Skip to main content
Log in

A Generalization of the Convex Kakeya Problem

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Given a set of line segments in the plane, not necessarily finite, what is a convex region of smallest area that contains a translate of each input segment? This question can be seen as a generalization of Kakeya’s problem of finding a convex region of smallest area such that a needle can be rotated through 360 degrees within this region. We show that there is always an optimal region that is a triangle, and we give an optimal Θ(nlogn)-time algorithm to compute such a triangle for a given set of n segments. We also show that, if the goal is to minimize the perimeter of the region instead of its area, then placing the segments with their midpoint at the origin and taking their convex hull results in an optimal solution. Finally, we show that for any compact convex figure G, the smallest enclosing disk of G is a smallest-perimeter region containing a translate of every rotated copy of G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ahn, H., Cheong, O.: Aligning two convex figures to minimize area or perimeter. Algorithmica 62, 464–479 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ben-Or, M.: Lower bounds for algebraic computation trees. In: Proceedings of the 15th Annual ACM Symposium on Theory of Computing, pp. 80–86 (1983)

    Google Scholar 

  3. Besicovitch, A.: Sur deux questions de l’intégrabilité des fonctions. J. Soc. Math. Phys. 2, 105–123 (1919)

    Google Scholar 

  4. Besicovitch, A.: On Kakeya’s problem and a similar one. Math. Z. 27, 312–320 (1928)

    Article  MathSciNet  Google Scholar 

  5. Besicovitch, A.: The Kakeya problem. Am. Math. Mon. 70, 697–706 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  6. Besicovitch, A.: On fundamental geometric properties of plane line sets. J. Lond. Math. Soc. 39, 441–448 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bezdek, K., Connelly, R.: Covering curves by translates of a convex set. Am. Math. Mon. 96, 789–806 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bezdek, K., Connelly, R.: The minimum mean width translation cover for sets of diameter one. Beitr. Algebra Geom. 39, 473–479 (1998)

    MATH  MathSciNet  Google Scholar 

  9. Bourgain, J.: Harmonic analysis and combinatorics: how much may they contribute to each other? In: Arnold, V., Atiyah, M., Lax, P., Mazur, B. (eds.) Mathematics: Frontiers and Perspectives, pp. 13–32. American Mathematical Society, Providence (2000)

    Google Scholar 

  10. Chakerian, G.: Sets of constant width. Pac. J. Math. 19, 13–21 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  11. do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall, New York (1976)

    MATH  Google Scholar 

  12. Fejes Tóth, L.: On the densest packing of convex disks. Mathematika 30, 1–3 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fisher, B.: On a problem of Besicovitch. Am. Math. Mon. 80(7), 785–787 (1973)

    Article  MATH  Google Scholar 

  14. Jung, H.: Über die kleinste Kugel, die eine räumliche Figur einschliesst. J. Reine Angew. Math. 123, 241–257 (1901)

    MATH  Google Scholar 

  15. Kakeya, S.: Some problems on maximum and minimum regarding ovals. Tohoku Sci. Rep. 6, 71–88 (1917)

    MATH  Google Scholar 

  16. Laba, I.: From harmonic analysis to arithmetic combinatorics. Bull., New Ser., Am. Math. Soc. 45(1), 77–115 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ohmann, D.: Extremalprobleme für konvexe Bereiche der euklidischen Ebene. Math. Z. 55, 346–352 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pál, G.: Ein Minimumproblem für Ovale. Math. Ann. 83, 311–319 (1921)

    Article  MATH  MathSciNet  Google Scholar 

  19. Perron, O.: Über einen Satz von Besicovitch. Math. Z. 28, 383–386 (1928)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rademacher, H.: On a theorem from Besicovitch. In: Szego, G. (ed.) Studies in Mathematical Analysis and Related Topics: Essays in Honor of George Pòlya, pp. 294–296. Stanford University Press, Stanford (1962)

    Google Scholar 

  21. Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  22. Schoenberg, I.: On certain minima related to the Besicovitch-Kakeya problem. Mathematika 4(27), 145–148 (1962)

    MathSciNet  Google Scholar 

  23. Schoenberg, I.: On the Besicovitch–Perron solution of the Kakeya problem. In: Szego, G. (ed.) Studies in Mathematical Analysis and Related Topics: Essays in Honor of George Pòlya, pp. 359–363. Stanford University Press, Stanford (1962)

    Google Scholar 

  24. Strang, G.: Maximum area with Minkowski measures of perimeter. Proc. R. Soc. Edinb. 138A, 189–199 (2008)

    MathSciNet  Google Scholar 

  25. Tao, T.: From rotating needles to stability of waves: emerging connections between combinatorics, analysis and PDE. Not. Am. Math. Soc. 48(3), 297–303 (2001)

    Google Scholar 

  26. Toussaint, G.: Solving geometric problems with the rotating calipers. In: Proceedings of IEEE MELECON, pp. 1–4 (1983)

    Google Scholar 

  27. Vigneron, A.: Geometric optimization and sums of algebraic functions. In: Proceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms, pp. 906–917 (2010)

    Chapter  Google Scholar 

  28. Wetzel, J.: Sectorial covers for curves of constant length. Can. Math. Bull. 16, 367–375 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wolff, T.: Recent work connected with the Kakeya problem. In: Rossi, H. (ed.) Prospects in Mathematics. American Mathematical Society, Providence (1999)

    Google Scholar 

Download references

Acknowledgements

We thank Helmut Alt, Tetsuo Asano, Jinhee Chun, Dong Hyun Kim, Mira Lee, Yoshio Okamoto, János Pach, Günter Rote, and Micha Sharir for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Vigneron.

Additional information

H.-K.A. was supported by NRF grant 2011-0030044 (SRC-GAIA) funded by the government of Korea. J.G. is the recipient of an Australian Research Council Future Fellowship (project number FT100100755). S.W. Bae was supported by NRF grant (NRF-2013R1A1A1A05006927) funded by the government of Korea. O.C. was supported in part by NRF grant 2011-0030044 (SRC-GAIA), and in part by NRF grant 2011-0016434, both funded by the government of Korea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, HK., Bae, S.W., Cheong, O. et al. A Generalization of the Convex Kakeya Problem. Algorithmica 70, 152–170 (2014). https://doi.org/10.1007/s00453-013-9831-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-013-9831-y

Keywords

Navigation