Skip to main content
Log in

Convergence analysis of a family of ELLAM schemes for a fully coupled model of miscible displacement in porous media

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We analyse the convergence of numerical schemes in the GDM–ELLAM (Gradient Discretisation Method–Eulerian Lagrangian Localised Adjoint Method) framework for a strongly coupled elliptic-parabolic PDE which models miscible displacement in porous media. These schemes include, but are not limited to, Mixed Finite Element–ELLAM and Hybrid Mimetic Mixed–ELLAM schemes. A complete convergence analysis is presented on the coupled model, using only weak regularity assumptions on the solution (which are satisfied in practical applications), and not relying on \(L^\infty \) bounds (which are impossible to ensure at the discrete level given the anisotropic diffusion tensors and the general grids used in applications).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Alnashri, Y., Droniou, J.: A gradient discretisation method to analyse numerical schemes for non-linear variational inequalities, application to the seepage problem. SIAM J. Numer. Anal. 56(4), 2375–2405 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arbogast, T., Huang, C.: A fully mass and volume conserving implementation of a characteristic method for transport problems. SIAM J. Sci. Comput. 28(6), 2001–2022 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arbogast, T., Wang, W.-H.: Convergence of a fully conservative volume corrected characteristic method for transport problems. SIAM J. Numer. Anal. 48(3), 797–823 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arbogast, T., Wang, W.-H.: Stability, monotonicity, maximum and minimum principles, and implementation of the volume corrected characteristic method. SIAM J. Sci. Comput. 33(4), 1549–1573 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arbogast, T., Wheeler, M.F.: A characteristics-mixed finite element method for advection-dominated transport problems. SIAM J. Numer. Anal. 32(2), 404–424 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  7. Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43(5), 1872–1896 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chainais-Hillairet, C., Droniou, J.: Convergence analysis of a mixed finite volume scheme for an elliptic-parabolic system modeling miscible fluid flows in porous media. SIAM J. Numer. Anal. 45(5), 2228–2258 (2007). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chainais-Hillairet, C., Krell, S., Mouton, A.: Study of discrete duality finite volume schemes for the Peaceman model. SIAM J. Sci. Comput. 35(6), A2928–A2952 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chainais-Hillairet, C., Krell, S., Mouton, A.: Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media. Numer. Methods Partial Differ. Equ. 31(3), 723–760 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheng, H.M., Droniou, J.: Combining the hybrid mimetic mixed method and the Eulerian Lagrangian localised adjoint method for approximating miscible flows in porous media. In: Cancès, C., Omnes, P. (eds.) Finite Volumes for Complex Applications VIII–Hyperbolic, Elliptic and Parabolic Problems. Springer Proceedings in Mathematics and Statistics, vol. 200, pp. 367–376. Springer, Cham (2017)

    Chapter  Google Scholar 

  12. Cheng, H.M., Droniou, J.: An HMM-ELLAM scheme on generic polygonal meshes for miscible incompressible flows in porous media. J. Petrol. Sci. Eng. 172C, 707–723 (2018). https://doi.org/10.1016/j.petrol.2018.08.062

    Google Scholar 

  13. Di Pietro, D.A., Ern, A.: Mathematical aspects of discontinuous Galerkin methods. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69. Springer, Heidelberg (2012)

  14. Droniou, J.: Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24(8), 1575–1619 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Droniou, J., Eymard, R.: A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105(1), 35–71 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Droniou, J., Eymard, R., Gallouët, T., Guichard, C., Herbin, R.: The Gradient Discretisation Method, vol. 82 of Mathematics & Applications. Springer, Berlin (2018). To appear, https://hal.archives-ouvertes.fr/hal-01382358

  17. Droniou, J., Eymard, R., Gallouët, T., Herbin, R.: A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20(2), 265–295 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Droniou, J., Eymard, R., Gallouët, T., Herbin, R.: Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. (M3AS) 23(13), 2395–2432 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Droniou, J., Talbot, K.S.: On a miscible displacement model in porous media flow with measure data. SIAM J. Math. Anal. 46(5), 3158–3175 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  21. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.-L. (eds.) Techniques of Scientific Computing. Part III, Handbook of Numerical Analysis, VII, pp. 713–1020. North-Holland, Amsterdam (2000)

    Google Scholar 

  22. Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30(4), 1009–1043 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Eymard, R., Gallouët, T., Herbin, R.: \(\cal{RT}_k\) mixed finite elements for some nonlinear problems. Math. Comput. Simul. 118, 186–197 (2015)

    Article  Google Scholar 

  24. Feng, X.: On existence and uniqueness results for a coupled system modeling miscible displacement in porous media. J. Math. Anal. Appl. 194(3), 883–910 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Girault, V., Li, J., Rivière, B.M.: Strong convergence of the discontinuous galerkin scheme for the low regularity miscible displacement equations. Numer. Methods Partial Differ. Equ. 33(2), 489–513 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Holte, J.: Discrete Gronwall lemma and applications. In MAA-NCS meeting at the University of North Dakota, vol. 24, pp. 1–7, (2009). http://homepages.gac.edu/~holte/publications/GronwallLemma.pdf

  27. Kuznetsov, Y., Repin, S.: New mixed finite element method on polygonal and polyhedral meshes. Russ. J. Numer. Anal. Math. Model. 18(3), 261 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lie, K.-A., Mallison, B .T.: Mathematical Models for Oil Reservoir Simulation, pp. 850–856. Springer, Berlin (2015)

    Google Scholar 

  29. Rivière, B., Walkington, N.: Convergence of a discontinuous Galerkin method for the miscible displacement equation under low regularity. SIAM J. Numer. Anal. 49(3), 1085–1110 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Russell, T.F., Celia, M.A.: An overview of research on Eulerian–Lagrangian localized adjoint methods (ELLAM). Adv. Water Resour. 25(8), 1215–1231 (2002)

    Article  Google Scholar 

  31. Wang, H.: An optimal-order error estimate for a family of ELLAM–MFEM approximations to porous medium flow. SIAM J. Numer. Anal. 46(4), 2133–2152 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, H., Liang, D., Ewing, R .E., Lyons, S .L., Qin, G.: An approximation to miscible fluid flows in porous media with point sources and sinks by an Eulerian–Lagrangian localized adjoint method and mixed finite element methods. SIAM J. Sci. Comput. 22(2), 561–581 (2000). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

this research was supported by the Australian Government through the Australian Research Council’s Discovery Projects funding scheme (Project Number DP170100605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanz Martin Cheng.

Appendix: generic compactness results

Appendix: generic compactness results

The following results are particular cases of more general theorems on GDM that can be found in [16].

Lemma 9.1

(Regularity of the limit, space–time problems [16, Lemma 4.8]) Let \(p\in (1,\infty )\), and \((({\mathcal D}^T)_m)_{m\in \mathbb {N}}\) be a coercive and limit-conforming sequence of space–time GDs. For each \(m\in \mathbb {N}\), take \(u_m\in X_{{\mathcal D}_m}^{N_m+1}\) (identified with a piecewise-constant function \([0,T]\rightarrow X_{{\mathcal D}_m}\)) and assume that \((\Vert u_m \Vert _{L^p(0,T;X_{{\mathcal D}_m})})_{m\in \mathbb {N}}\) is bounded. Then there exists \(u\in L^p(0,T;H^1(\Omega ))\) such that, up to a subsequence as \(m\rightarrow \infty \), \(\Pi _{{\mathcal D}_m}u_m \rightarrow u\) and \(\nabla _{{\mathcal D}_m}u_m \rightarrow \nabla u\) weakly in \(L^p(0,T;L^2(\Omega ))\). The same property holds with \(p=+\infty \), provided that the weak convergences are replaced by weak-\(*\) convergences.

Definition 9.2

(Compactly–continuously embedded sequence) Let \((X_m,\Vert \cdot \Vert _{X_m})_{m\in \mathbb {N}}\) be a sequence of Banach spaces included in \(L^2(\Omega )\), and \((Y_m,\Vert \cdot \Vert _{Y_m})_{m\in \mathbb {N}}\) be a sequence of Banach spaces. The sequence \((X_m,Y_m)_{m\in \mathbb {N}}\) is compactly–continuously embedded in \(L^2(\Omega )\) if:

  1. (1)

    If \(u_m\in X_m\) for all \(m\in \mathbb {N}\) and \((\Vert u_m \Vert _{X_m})_{m\in \mathbb {N}}\) is bounded, then \((u_m)_{m\in \mathbb {N}}\) is relatively compact in \(L^2(\Omega )\).

  2. (2)

    \(X_m\subset Y_m\) for all \(m\in \mathbb {N}\) and for any sequence \((u_m)_{m\in \mathbb {N}}\) such that

    1. (a)

      \(u_m\in X_m\) for all \(m\in \mathbb {N}\) and \((\Vert u_m \Vert _{X_m})_{m\in \mathbb {N}}\) is bounded,

    2. (b)

      \(\Vert u_m \Vert _{Y_m}\rightarrow 0\) as \(m \rightarrow \infty \),

    3. (c)

      \((u_m)_{m\in \mathbb {N}}\) converges in \(L^2(\Omega )\),

    it holds that \(u_m\rightarrow 0\) in \(L^2(\Omega )\).

Theorem 9.3

(Discrete Aubin–Simon compactness [16, Theorem C.8]) Let \((X_m, Y_m)_{m\in \mathbb {N}}\) be compactly–continuously embedded in \(L^2(\Omega )\), \(T > 0\) and \((f_m)_{m\in \mathbb {N}}\) be a sequence in \(L^2(0,T;L^2(\Omega ))\) such that

  • For all \(m \in N\), there exists \(N\in \mathbb {N}^*\), \(0=t^{(0)}<\dots <t^{(N)}=T\) and \((v^{(n)})_{n=0,\dots ,N} \in X_{m}^{N+1}\) such that \(f_m(t)=v^{(n+1)}\)   for all \(n=0,\dots ,N-1\) and a.e. \(t\in (t^{(n)},t^{(n+1)}), f_m(t)=v^{(n+1)}\). We then set

    $$\begin{aligned} \delta _m f_m(t)= \dfrac{v^{(n+1)}-v^{(n)}}{t^{(n+1)}-t^{(n)}} \hbox { for }n=0,\dots ,N-1\hbox { and }t\in (t^{(n)},t^{(n+1)}). \end{aligned}$$
  • The sequence \((f_m)_{m\in \mathbb {N}}\) is bounded in \(L^2(0, T;L^2(\Omega ))\).

  • The sequence \((\Vert f_m \Vert _{L^2(0,T;X_m)})_{m\in \mathbb {N}}\) is bounded.

  • The sequence \((\Vert \delta _mf_m \Vert _{L^2(0,T;Y_m)})_{m\in \mathbb {N}}\) is bounded.

Then \((f_m)_{m\in \mathbb {N}}\) is relatively compact in \(L^2(0,T;L^2(\Omega ))\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H.M., Droniou, J. & Le, KN. Convergence analysis of a family of ELLAM schemes for a fully coupled model of miscible displacement in porous media. Numer. Math. 141, 353–397 (2019). https://doi.org/10.1007/s00211-018-1002-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-1002-2

Mathematics Subject Classification

Navigation