Skip to main content
Log in

Human body segmentation based on shape constraint

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Human body segmentation is essential for many practical applications, e.g., video surveillance analysis in intelligent urban. However, existing methods mainly suffer from various human poses. In this paper, we try to address this issue by introducing human shape constraint. First, human pose estimation is performed, and locations of human body parts are determined. Contrast to the previous work, we just use the human body parts with high precision. Then we combines the star convexity and the human body parts’ locations as shape constraint. The final segmentation results are acquired through the optimization step. Comprehensive and comparative experimental results demonstrate that the proposed method achieves promising performance and outperforms many state-of-the-art methods over publicly available challenging datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu, W., Xia, T., Wan, J., Zhang, Y., Li, J.: “RGB-D based multi-attribute people search in intelligent visual surveillance.” In: Proceedings of International Conference on Multimedia Modeling, pp. 750–760 (2012)

  2. Huang, L., Xia, T., Wan, J., Zhang, Y., Lin, S.: “Personalized portraits ranking”. In: Proceedings of the 19th ACM International Conference on Multimedia. New York, NY, USA, pp. 1277–1280 (2011)

  3. Palmero, C., Clapés, A., Bahnsen, C., Møgelmose, A., Moeslund, T.B., Escalera, S.: Multi-modal RGB–depth–thermal human body segmentation. Int. J. Comput. Vis. 118(2), 217–239 (2016)

    Article  MathSciNet  Google Scholar 

  4. Seguin, G., Alahari, K., Sivic, J., Laptev, I.: Pose estimation and segmentation of multiple people in stereoscopic movies. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1643–1655 (2015)

    Article  Google Scholar 

  5. Boykov, Y.Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary and region segmentation of objects in ND images. Proceedings of the IEEE International Conference on Computer Vision 1, 105–112 (2001)

    Google Scholar 

  6. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Trans. Graphics (TOG) 23, 309–314 (2004)

    Article  Google Scholar 

  7. Huang, L., Tang, S., Zhang, Y., Lian, S., Lin, S.: Robust human body segmentation based on part appearance and spatial constraint. Neurocomputing 118, 191–202 (2013)

    Article  Google Scholar 

  8. Lempitsky, V., Kohli, P., Rother, C., Sharp, T.: “Image segmentation with a bounding box prior.” In: Proceedings of the IEEE International Conference on Computer Vision, pp. 277–284 (2009)

  9. Lin, Z., Davis, L. S., Doermann, D., DeMenthon, D.: “An interactive approach to pose-assisted and appearance-based segmentation of humans.” In: Proceedings of IEEE International Conference on Computer Vision, pp. 1–8 (2007)

  10. Yang, Y., Ramanan, D.: “Articulated pose estimation with flexible mixtures-of-parts.” In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. pp. 1385–1392 (2011)

  11. Johnson, S., Everingham, M.: “Learning effective human pose estimation from inaccurate annotation.” In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1465–1472 (2011)

  12. Veksler, O.: Star Shape Prior for Graph-Cut Image Segmentation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) Computer Vision - ECCV 2008, pp. 454–467. Springer, Berlin Heidelberg (2008)

    Chapter  Google Scholar 

  13. Gulshan, V., Rother, C., Criminisi, A., Blake, A., Zisserman, A.: “Geodesic star convexity for interactive image segmentation.” In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. pp. 3129–3136 (2010)

  14. Yang, B., Huang, C., Nevatia, R.: Segmentation of objects in a detection window by Nonparametric Inhomogeneous CRFs. Comput. Vis. Image Underst. 115(11), 1473–1482 (2011)

    Article  Google Scholar 

  15. Fidler, S., Mottaghi, R., Yuille, A., Urtasun, R.: “Bottom-up segmentation for top-down detection.” In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, pp. 3294–3301 (2013)

  16. Pont-Tuset, J., Arbelaez, P., Barron, J., Marques, F., Malik, J.: Multiscale combinatorial grouping for image segmentation and object proposal generation. IEEE Trans. Pattern. Anal. Mach. Intell. 99, 1–1 (2016)

    Google Scholar 

  17. Wang, X., Tang, Y., Masnou, S., Chen, L.: A global/local affinity graph for image segmentation. IEEE Trans. Image Process. 24(4), 1399–1411 (2015)

    Article  MathSciNet  Google Scholar 

  18. Liu, Z., Li, X., Luo, P., Loy, C.C., Tang, X.: “Semantic image segmentation via deep parsing network,” In: IEEE International Conference on Computer Vision (ICCV) 2015, 1377–1385 (2015)

  19. Slabaugh, G., Unal, G.: “Graph cuts segmentation using an elliptical shape prior.” In: IEEE International Conference on Image Processing 2005, vol. 2, pp. II–1222–5 (2005)

  20. Das, P., Veksler, O.: “Semiautomatic Segmentation with Compact Shape Prior.” In: The 3rd Canadian Conference on Computer and Robot Vision (CRV’06), pp. 28–28 (2006)

  21. Borenstein, E., Malik, J.: “Shape guided object segmentation.” In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. vol. 1, pp. 969–976 (2006)

  22. Kumar, Mp, Torr, P.H., Zisserman, A.: Objcut: Efficient segmentation using top-down and bottom-up cues. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 530–545 (2010)

    Article  Google Scholar 

  23. Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition. Int. J. Comput. Vis. 61(1), 55–79 (2005)

    Article  Google Scholar 

  24. Ramanan, D.: Learning to parse images of articulated bodies. Adv. Neural Inf. Proc. Syst. 19, 1129 (2007)

    Google Scholar 

  25. Bhaskar, H., Mihaylova, L., Maskell, S.: “Articulated human body parts detection based on cluster background subtraction and foreground matching.” Neurocomputing 100(2), 58–73 (2013)

  26. López-Quintero, M.I., Marín-Jiménez, M.J., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Stereo pictorial structure for 2D articulated human pose estimation. Mach. Vis. Appl. 27(2), 157–174 (2015)

    Article  Google Scholar 

  27. Smith, C.R.: A characterization of star-shaped sets. Am. Math. Mon. 75(4), 386–386 (1968)

  28. Hu, Z., Yan, H., Lin, X.: Clothing segmentation using foreground and background estimation based on the constrained Delaunay triangulation. Pattern Recognit. 41(5), 1581–1592 (2008)

  29. Mishra, A., Aloimonos, Y., Fah, C. L.: “Active segmentation with fixation.” In: Proceedings of IEEE International Conference on Computer Vision. pp. 468–475 (2009)

  30. Li, S., Lu, H., Zhang, L.: Arbitrary body segmentation in static images. Pattern Recognit. 45(9), 3402–3413 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 61402428, 61672475, 61602430); Qingdao Science and Technology Development Plan (No. 16-5-1-13-jch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Nie, J. & Wei, Z. Human body segmentation based on shape constraint. Machine Vision and Applications 28, 715–724 (2017). https://doi.org/10.1007/s00138-017-0829-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-017-0829-3

Keywords

Navigation