Skip to main content

The role of measurement uncertainty in numeric law induction

  • Applications
  • Conference paper
  • First Online:
Advances in Intelligent Computing — IPMU '94 (IPMU 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 945))

  • 167 Accesses

Abstract

Empirical induction of numeric laws aims at finding numerical laws from an experimentation set, using symbolic and inductive techniques. Faced with experimental data, these techniques must be adapted in order to deal with noisy data. In this article, we present the solutions for dealing with numerical uncertainty which are implemented in our system A R C [16]. These solutions are inspired by experimental science and join simplicity to efficiency. Moreover, when used in a more realistic way, numerical uncertainty can significantly improve not only the accuracy of the results but also the search algorithm's efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dubois D. and Prade H. Théorie des Possibilités — Applications à la Représentation des Connaissances en Informatique. Masson, Paris, 1985.

    Google Scholar 

  2. Dubois D. and Prade H. Fuzzy numbers: an overview. In Bezdek J.C., editor, Analysis of Fuzzy Information, volume 1: Mathematics and Logic. CRC Press, 1987.

    Google Scholar 

  3. Dubois D. and Prade H. Order-of-magnitude reasoning with fuzzy relations. Revue d'Intelligence Artificielle, 3(4), 1989.

    Google Scholar 

  4. B.C. Falkenhainer and R.S. Michalski. Integrating Quantitative and Qualitative Discovery in the ABACUS System. In Y. Kodratoff and R.S Michalski, editors, Machine Learning: an Artificial Intelligence Approach, volume 3. Morgan-Kaufmann, 1990. Also published in Machine Learning Journal, vol. 3, 1986.

    Google Scholar 

  5. Saporta G. Probabilités, analyse de données et statistique. Editions technip, 1990.

    Google Scholar 

  6. Zytkow J.M., Zhu J., and Hussam A. Automated Discovery in a Chemistry Laboratory. In Proceedings of the 8th National Conference on Artificial Intelligence, 1990.

    Google Scholar 

  7. Zadeh L.A. Fuzzy Sets. In Information and control, volume 8, pages 338–353, 1965.

    Google Scholar 

  8. P. Langley. Rediscovering Physics with BACON.3. In Proceedings of the 6th IJCAI, pages 505–507. Morgan-Kaufmann, 1979.

    Google Scholar 

  9. P. Langley, H. Simon, G.L. Bradshaw, and J. Zytkow. Scientific Discovery. Computational Approaches of the Creative Process. MIT Press, 1987.

    Google Scholar 

  10. Eurin M. and Guimiot H. Physique. Classiques Hachette. Hachette, 1953.

    Google Scholar 

  11. Joyal M. Cours de physique, volume 3: Electricité. Masson & Cie, 1956.

    Google Scholar 

  12. Zytkow J. M. Combining many searches in the FAHRENHEIT discovery system. In Proceedings of the 4th International Workshop on Machine Learning. Morgan-Kaufmann, 1987.

    Google Scholar 

  13. M. Moulet. Using accuracy in numerical law discovery. In Y. Kodratoff, editor, Proceedings of the 5th European Working Session on Learning, Lecture Notes in Artificial Intelligence, pages 118–136. Springer-Verlag, 1991.

    Google Scholar 

  14. M. Moulet. ARC.2: Régression Linéaire en Découverte Scientifique. In Actes des 1res Journées sur l'Apprentissage et l'explication des Connaissances, 1992.

    Google Scholar 

  15. M. Moulet. ARC.2: Linear Regression in ABACUS. In Proceedings of the ML 92 Workshop on Machine Discovery, 1992.

    Google Scholar 

  16. M. Moulet. Découverte empirique de lois numériques ou ABACUS Revu et Corrigé. PhD thesis. Thèse de Doctorat, Université de Paris-Sud, France, 1993.

    Google Scholar 

  17. M. Moulet. Current Limits and Potentials of a BACON-like System. In G. Nakhaeizadeh and C. Taylor, editors, Workshop Notes on Machine Learning and Statistics. MLnet Familiarization Workshops, 1994.

    Google Scholar 

  18. M. Moulet. Iterative Model Construction with Regression. In T. Cohn, editor, Proceedings of the 11th European Conference on Artificial Intelligence, pages 448–452. Wiley and Sons, 1994.

    Google Scholar 

  19. Moore R. Interval Analysis. Prentice Hall Int., 1966.

    Google Scholar 

  20. Moore R. Methods and Applications of Interval Analysis, volume 2 of SIAM Studies on Applied Mathematics. Philadelphia, 1979.

    Google Scholar 

  21. Tomassonne R., Lesquoy E., and Millier C. La régression: nouveaux regards sur une ancienne méthode statistique. Editions INRIA, 1986.

    Google Scholar 

  22. C. Schaffer. A proven domain-Independent Scientific Function Finding Algorithm. In Proceedings of the 8th National Conference on Artificial Intelligence, pages 828–833, 1990.

    Google Scholar 

  23. Y.H Wu and S. Wang. Discovering Functional Relationships from Observational Data. In G. Piatetsky-Shapiro and W.J. Frawley, editors, Knowledge Discovery in Databases. MIT Press, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernadette Bouchon-Meunier Ronald R. Yager Lotfi A. Zadeh

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moulet, M. (1995). The role of measurement uncertainty in numeric law induction. In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds) Advances in Intelligent Computing — IPMU '94. IPMU 1994. Lecture Notes in Computer Science, vol 945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035995

Download citation

  • DOI: https://doi.org/10.1007/BFb0035995

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60116-6

  • Online ISBN: 978-3-540-49443-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics