Skip to main content

On the Planar Split Thickness of Graphs

  • Conference paper
  • First Online:
LATIN 2016: Theoretical Informatics (LATIN 2016)

Abstract

Motivated by applications in graph drawing and information visualization, we examine the planar split thickness of a graph, that is, the smallest k such that the graph is k-splittable into a planar graph. A k-split operation substitutes a vertex v by at most k new vertices such that each neighbor of v is connected to at least one of the new vertices.

We first examine the planar split thickness of complete and complete bipartite graphs. We then prove that it is NP-hard to recognize graphs that are 2-splittable into a planar graph, and show that one can approximate the planar split thickness of a graph within a constant factor. If the treewidth is bounded, then we can even verify k-splittablity in linear time, for a constant k.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A graph G is k-degenerate if every subgraph of G contains a vertex of degree at most k.

References

  1. Beineke, L.W., Harary, F.: The thickness of the complete graph. Canad. J. Math. 14(17), 850–859 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borradaile, G., Eppstein, D., Zhu, P.: Planar induced subgraphs of sparse graphs. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 1–12. Springer, Heidelberg (2014)

    Google Scholar 

  3. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inform. Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Courcelle, B.: On the expression of graph properties in some fragments of monadic second-order logic. In: Immerman, N., Kolaitis, P.G. (eds.) Proc. Descr. Complex. Finite Models. DIMACS, vol. 31, pp. 33–62. Amer. Math. Soc. (1996)

    Google Scholar 

  5. Dujmovic, V., Wood, D.R.: Graph treewidth and geometric thickness parameters. Discrete Comput. Geom. 37(4), 641–670 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duncan, C.A., Eppstein, D., Kobourov, S.G.: The geometric thickness of low degree graphs. In: Snoeyink, J., Boissonnat, J. (eds.) Proceedings of the 20th ACM Symposium on Computational Geometry (SOCG 2004). pp. 340–346. ACM (2004)

    Google Scholar 

  7. Faria, L., de Figueiredo, C.M.H., de Mendonça Neto, C.F.X.: Splitting number is NP-complete. Discrete Appl. Math. 108(1–2), 65–83 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hartsfield, N.: The toroidal splitting number of the complete graph \({K}_n\). Discrete Math. 62, 35–47 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hartsfield, N.: The splitting number of the complete graph in the projective plane. Graphs Comb. 3(1), 349–356 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hartsfield, N., Jackson, B., Ringel, G.: The splitting number of the complete graph. Graphs Comb. 1(1), 311–329 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Heawood, P.J.: Map colour theorem. Quart. J. Math. 24, 332–338 (1890)

    MATH  Google Scholar 

  12. Hutchinson, J.P.: Coloring ordinary maps, maps of empires, and maps of the moon. Math. Mag. 66(4), 211–226 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Knauer, K., Ueckerdt, T.: Three ways to cover a graph. Arxiv report (2012). http://arxiv.org/abs/1205.1627

  14. Kratochvíl, J., Lubiw, A., Nesetril, J.: Noncrossing subgraphs in topological layouts. SIAM J. Discrete Math. 4(2), 223–244 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liebers, A.: Planarizing graphs - a survey and annotated bibliography. J. Graph Algor. Appl. 5(1), 1–74 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. de Mendonça Neto, C.F.X., Schaffer, K., Xavier, E.F., Stolfi, J., Faria, L., de Figueiredo, C.M.H.: The splitting number and skewness of \({C}_n\times {C}_m\). Ars Comb. 63 (2002)

    Google Scholar 

  17. Morgenstern, M.: Existence and explicit constructions of \(q+1\) regular Ramanujan graphs for every prime power \(q\). J. Comb. Theory, Ser. B 62(1), 44–62 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nash-Williams, C.: Decomposition of finite graphs into forests. J. London Math. Soc. 39(1), 12 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ringel, G., Jackson, B.: Solution of Heawood’s empire problem in the plane. J. Reine Angew. Math. 347, 146–153 (1984)

    MathSciNet  MATH  Google Scholar 

  20. Scheinerman, E.R., West, D.B.: The interval number of a planar graph: Three intervals suffice. J. Comb. Theory, Ser. B 35(3), 224–239 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Thomason, A.: The extremal function for complete minors. J. Comb. Theory, Ser. B 81(2), 318–338 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Most of the results of this paper were obtained at the McGill-INRIA-Victoria Workshop on Computational Geometry, Barbados, February 2015. We would like to thank the organizers of these events, as well as many participants for fruitful discussions and suggestions. The first, fourth, sixth, and eighth authors acknowledge the support from NSF grant 1228639, 2012C4E3KT PRIN Italian National Research Project, PEPS egalite project, and NSERC respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debajyoti Mondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eppstein, D. et al. (2016). On the Planar Split Thickness of Graphs. In: Kranakis, E., Navarro, G., Chávez, E. (eds) LATIN 2016: Theoretical Informatics. LATIN 2016. Lecture Notes in Computer Science(), vol 9644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49529-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49529-2_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49528-5

  • Online ISBN: 978-3-662-49529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics