Skip to main content

Modelling Highly Symmetrical Molecules: Linking Ontologies and Graphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7557))

Abstract

Methods for automated classification of chemical data depend on identifying interesting parts and properties. However, classes of chemical entities which are highly symmetrical and contain large numbers of homogeneous parts (such as carbon atoms) are not straightforwardly classified in this fashion. One such class of molecules is the fullerene family, which shows potential for many novel applications including in biomedicine. The Web Ontology Language OWL cannot be used to represent the structure of fullerenes, as their structure is not tree-shaped. While individual members of the fullerene class can be modelled in standard FOL, expressing the properties of the class as a whole (independent of the count of atoms of the members) requires second-order quantification. Given the size of chemical ontologies such as ChEBI, using second-order expressivity in the general case is prohibitively expensive to practical applications. To address these conflicting requirements, we introduce a novel framework in which we heterogeneously integrate standard ontological modelling with monadic second-order reasoning over chemical graphs, enabling various kinds of information flow between the distinct representational layers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnborg, S.: A general purpose MSOL model checker and optimizer based on Boolean function representation. Technical report, KTH, Stockholm, Sweden (1994)

    Google Scholar 

  2. Caetano, E.W.S., Freire, V.N., dos Santos, S.G., Galvao, D.S., Sato, F.: Möbius and twisted graphene nanoribbons: stability, geometry and electronic properties. The Journal of Chemical Physics 128(164719) (2008)

    Google Scholar 

  3. Courcelle, B., Engelfriet, J.: Graph structure and monadic second-order logic—A language theoretic approach. Cambridge University Press (2011)

    Google Scholar 

  4. de Matos, P., Alcántara, R., Dekker, A., Ennis, M., Hastings, J., Haug, K., Spiteri, I., Turner, S., Steinbeck, C.: Chemical Entities of Biological Interest: an update. Nucl. Acids Res. 38, D249–D254 (2010)

    Article  Google Scholar 

  5. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory. Springer (2005)

    Google Scholar 

  6. Elsenbroich, C., Kutz, O., Sattler, U.: A Case for Abductive Reasoning over Ontologies. In: Proc. of OWLED 2006 (2006)

    Google Scholar 

  7. Canceill, J., et al.: From classical chirality to topologically chiral catenands and knots. In: Supramolecular Chemistry I Directed Synthesis and Molecular Recognition. Topics in Current Chemistry, vol. 165, pp. 131–162. Springer, Heidelberg (1993)

    Google Scholar 

  8. Wester, M.J., et al.: Scaffold Topologies. 2. Analysis of Chemical Databases. Journal of Chemical Information and Modeling 48(7), 1311–1324 (2008)

    Article  Google Scholar 

  9. Habel, A., Pennemann, K.-H.: Correctness of high-level transformation systems relative to nested conditions. Mathematical Structures in Computer Science 19(2), 245–296 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Habel, A., Radke, H.: Expressiveness of graph conditions with variables. ECEASST 30 (2010)

    Google Scholar 

  11. Han, D., Pal, S., Liu, Y., Yan, H.: Folding and cutting DNA into reconfigurable topological nanostructures. Nature Nanotechnology 5, 712–717 (2010)

    Article  Google Scholar 

  12. Hastings, J., Magka, D., Batchelor, C., Duan, L., Stevens, R., Ennis, M., Steinbeck, C.: Structure-based classification and ontology in chemistry. Journal of Cheminformatics 4(1), 8 (2012)

    Article  Google Scholar 

  13. Konyk, M., De Leon, A., Dumontier, M.: Chemical Knowledge for the Semantic Web. In: Bairoch, A., Cohen-Boulakia, S., Froidevaux, C. (eds.) DILS 2008. LNCS (LNBI), vol. 5109, pp. 169–176. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Magka, D., Motik, B., Horrocks, I.: Modelling structured domains using description graphs and logic programming, Technical report, Dept. of Computer Science, U. of Oxford (2011)

    Google Scholar 

  15. Motik, B., Cuenca Grau, B., Horrocks, I., Sattler, U.: Representing Ontologies Using Description Logics, Description Graphs, and Rules. Artificial Intelligence 173(14), 1275–1309 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with Rules. Journal of Web Semantics: Science, Services and Agents on the World Wide Web 3(1), 41–60 (2005)

    Article  Google Scholar 

  17. Rzepa, H.: Molecular möbius strips and trefoil knots (2003), http://www.ch.ic.ac.uk/motm/trefoil/ (last accessed December 2011)

  18. Trinajstic, N.: Chemical graph theory. CRC Press, Florida (1992)

    Google Scholar 

  19. Tseng, H.-R., Vignon, S.A., Stoddart, J.F.: Toward chemically controlled nanoscale molecular machinery. Angewandte Chemie International Edition 42, 1491–1495 (2003)

    Article  Google Scholar 

  20. Weisstein, E.W.: Polyhedral graph (2011), http://mathworld.wolfram.com/PolyhedralGraph.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kutz, O., Hastings, J., Mossakowski, T. (2012). Modelling Highly Symmetrical Molecules: Linking Ontologies and Graphs. In: Ramsay, A., Agre, G. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2012. Lecture Notes in Computer Science(), vol 7557. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33185-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33185-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33184-8

  • Online ISBN: 978-3-642-33185-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics