Skip to main content

Experiments with an In-Vitro Robot Brain

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5897))

Abstract

The controlling mechanism of a typical mobile robot is usually a computer system either remotely positioned or in-body. Recent research is on-going in which biological neurons are grown and trained to act as the brain of an interactive real-world robot – thereby acting as instinctive computing elements. Studying such a system provides insights into the operation of biological neural structures; therefore, such research has immediate medical implications as well as enormous potential in computing and robotics. A system involving closed-loop control of a mobile robot by a culture of neurons has been created. This article provides an overview of the problem area, gives an idea of the breadth of present ongoing research, details our own system architecture and, in particular, reports on the results of experiments with real-life robots. The authors see this as a new form of artificial intelligence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reger, B., Fleming, K., Sanguineti, V., Simon Alford, S., Mussa-Ivaldi, F.: Connecting brains to robots: An artificial body for studying the computational properties of neural tissues. Artificial Life 6, 307–324 (2000)

    Article  Google Scholar 

  2. Holzer, R., Shimoyama, I., Miura, H.: Locomotion control of a bio-robotic system via electric stimulation. In: Proceedings of International Conference on Intelligent Robots and Systems, Grenoble, France (1997)

    Google Scholar 

  3. Talwar, S., Xu, S., Hawley, E., Weiss, S., Moxon, K., Chapin, J.: Rat navigation guided by remote control. Nature 417, 37–38 (2002)

    Article  Google Scholar 

  4. Chapin, J., Moxon, K., Markowitz, R., Nicolelis, M.: Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nature Neuroscience 2, 664–670 (1999)

    Article  Google Scholar 

  5. Bakkum, D.J., Shkolnik, A., Ben-Ary, G., DeMarse, T., Potter, S.: Removing Some ‘A’ from AI: Embodied Cultured Networks. Lecture Notes in Computer Science, pp. 130–145 (2004)

    Google Scholar 

  6. Thomas, C., Springer, P., Loeb, G., Berwald-Netter, Y., Okun, L.: A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp. Cell Res. 74, 61–66 (1972)

    Article  Google Scholar 

  7. Gross, G.: Simultaneous single unit recording in vitro with a photoetched laser deinsulated gold multimicroelectrode surface. IEEE Transactions on Biomedical Engineering 26, 273–279 (1979)

    Article  Google Scholar 

  8. Pine, J.: Recording action potentials from cultured neurons with extracellular microcircuit electrodes. Journal of Neuroscience Methods 2, 19–31 (1980)

    Article  Google Scholar 

  9. Potter, S., Lukina, N., Longmuir, K., Wu, Y.: Multi-site two-photon imaging of neurons on multi-electrode arrays. In: SPIE Proceedings, vol. 4262, pp. 104–110 (2001)

    Google Scholar 

  10. Gross, G., Rhoades, B., Kowalski, J.: Dynamics of burst patterns generated by monolayer networks in culture. In: Neurobionics: An Interdisciplinary Approach to Substitute Impaired Functions of the Human Nervous System 1993, pp. 89–121 (1993)

    Google Scholar 

  11. Kamioka, H., Maeda, E., Jimbo, Y., Robinson, H., Kawana, A.: Spontaneous periodic synchronized bursting during the formation of mature patterns of connections in cortical neurons. Neuroscience Letters 206, 109–112 (1996)

    Article  Google Scholar 

  12. Lewicki, M.: A review of methods for spike sorting: the detection and classification of neural action potentials. Network (Bristol) 9(4), R53 (1998)

    Article  MATH  Google Scholar 

  13. Saito, S., Kobayashik, S., Ohashio, Y., Igarashi, M., Komiya, Y., Ando, S.: Decreased synaptic density in aged brains and its prevention by rearing under enriched environment as revealed by synaptophysin contents. Journal Neuroscience Research 39, 57–62 (1994)

    Article  Google Scholar 

  14. Ramakers, G.J., Corner, M.A., Habets, A.M.: Development in the absence of spontaneous bioelectric activity results in increased stereotyped burst firing in cultures of dissociated cerebral cortex. Exp Brain Res 79, 157–166 (1990)

    Article  Google Scholar 

  15. Chiappalone, M., Vato, A., Berdondini, L., Koudelka-Hep, M., Martinoia, S.: Network Dynamics and Synchronous Activity in cultured Cortical Neurons. International Journal of Neural Systems 17(2), 87–103 (2007)

    Article  Google Scholar 

  16. Shkolnik, A.C.: Neurally controlled simulated robot: applying cultured neurons to handle an approach / avoidance task in real time, and a framework for studying learning in vitro, in Mathematics and Computer Science. Masters Thesis, Dept. of Computer Science, Emory University: Georgia (2003)

    Google Scholar 

  17. DeMarse, T.B., Dockendorf, K.P.: Adaptive flight control with living neuronal networks on microelectrode arrays. In: Proceedings of IEEE International Joint Conference on Neural Networks, IJCNN 2005, pp. 1549–1551 (2005)

    Google Scholar 

  18. Shahaf, G., Marom, S.: Learning in networks of cortical neurons. Journal Neuroscience 21(22), 8782–8788 (2001)

    Google Scholar 

  19. Bull, L., Uruokov, I.: Initial results from the use of learning classifier systems to control in vitro neuronal networks. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 369–376. ACM, London (2007)

    Chapter  Google Scholar 

  20. Hammond, M., Marshall, S., Downes, J., Xydas, D., Nasuto, S., Becerra, V., Warwick, K., Whalley, B.J.: Robust Methodology For The Study Of Cultured Neuronal Networks on MEAs. In: Proceedings 6th International Meeting on Substrate-Integrated Micro Electrode Arrays, pp. 293–294 (2008)

    Google Scholar 

  21. Potter, S.M., DeMarse, T.B.: A new approach to neural cell culture for long-term studies. Journal Neuroscience Methods 110, 17–24 (2001)

    Article  Google Scholar 

  22. Rolston, J.D., Wagenaar, D.A., Potter, S.M.: Precisely Timed Spatiotemporal Patterns of Neural Activity in Dissociated Cortical Cultures. Neuroscience 148, 294–303 (2007)

    Article  Google Scholar 

  23. Wagenaar, D., DeMarse, T.B., Potter, S.M.: MEABench: A Toolset for Multi-electrode Data Acquisition and On-line Analysis. In: Proc. 2nd Int. IEEE EMBS Conf. Neural Eng., pp. 518–521 (2005)

    Google Scholar 

  24. Xydas, D., Warwick, K., Whalley, B., Nasuto, S., Becerra, V., Hammond, M., Downes, J.: Architecture for Living Neuronal Cell Control of a Mobile Robot. In: Proc. European Robotics Symposium EURO 2008, Prague, pp. 23–31 (2008)

    Google Scholar 

  25. Hutt, B., Warwick, K., Goodhew, I.: Emergent Behaviour in Autonomous Robots. In: Bryant, J., Atherton, M., Collins, M. (eds.) Information Transfer in Biological Systems. Design in Nature Series, vol. 2, ch. 14. WIT Press, Southampton (2005)

    Google Scholar 

  26. Hasselmo, M.E.: Acetycholine and learning in a cortical associative memory source. Neural Computation Archive 5, 32–44 (1993)

    Article  Google Scholar 

  27. Cozzi, L., Chiappalone, M., Ide, A., Novellino, A., Martinoia, S., Sanguineti, V.: Coding and Decoding of Information in a Bi-directional Neural Interface. Neurocomputing 65/66, 783–792 (2005)

    Article  Google Scholar 

  28. Novellino, A., Cozzi, L., Chiappalone, M., Sanguinetti, V., Martinoia, S.: Connecting Neurons to a Mobile Robot: An In Vitro Bi-directional Neural Interface. In: Computational Intelligence and Neuroscience (2007)

    Google Scholar 

  29. Karniel, A., Kositsky, M., Fleming, K., Chiappalone, M., Sanguinetti, V., Alford, T., Mussa-Ivaldi, A.: Computational Analysis In Vitro: Dynamics and Plasticity of a Neuro-Robotic System. Journal of Neural Engineering 2, S250–S265 (2005)

    Article  Google Scholar 

  30. Hutt, B., Warwick, K.: Museum Robots: Multi-Robot Systems for Public Exhibition. In: Proc. 35th International Symposium on Robotics, Paris, p. 52 (2004)

    Google Scholar 

  31. Marks, P.: Rat-Brained Robots Take Their First Steps. New Scientist 199(2669), 22–23 (2008)

    Article  Google Scholar 

  32. DeMarse, T., Wagenaar, D., Blau, A., Potter, S.: The Neurally Controlled Animat: Biological Brains Acting with Simulated Bodies. Autonomous Robots 11, 305–310 (2001)

    Article  MATH  Google Scholar 

  33. Chang, Q., Gold, P.: Switching Memory Systems during Learning: Changes in Patterns of Brain Acetylcholine Release in the Hippocampus and Striatum in Rats. Journal of Neuroscience 23, 3001–3005 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Warwick, K., Nasuto, S.J., Becerra, V.M., Whalley, B.J. (2011). Experiments with an In-Vitro Robot Brain. In: Cai, Y. (eds) Computing with Instinct. Lecture Notes in Computer Science(), vol 5897. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19757-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19757-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19756-7

  • Online ISBN: 978-3-642-19757-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics