Skip to main content

Active Self-calibration of Multi-camera Systems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6376))

Abstract

We present a method for actively calibrating a multi-camera system consisting of pan-tilt zoom cameras. After a coarse initial calibration, we determine the probability of each relative pose using a probability distribution based on the camera images. The relative poses are optimized by rotating and zooming each camera pair in a way that significantly simplifies the problem of extracting correct point correspondences. In a final step we use active camera control, the optimized relative poses, and their probabilities to calibrate the complete multi-camera system with a minimal number of relative poses. During this process we estimate the translation scales in a camera triangle using only two of the three relative poses and no point correspondences. Quantitative experiments on real data outline the robustness and accuracy of our approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhang, Z.: Flexible Camera Calibration by Viewing a Plane from Unknown Orientations. In: Proceedings of the ICCV, pp. 666–673 (1999)

    Google Scholar 

  2. Hartley, R.: Self-calibration from multiple views with a rotating camera. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 471–478. Springer, Heidelberg (1994)

    Google Scholar 

  3. Bajramovic, F., Denzler, J.: Self-calibration with Partially Known Rotations. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 1–10. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Chen, X., Davis, J., Slusallek, P.: Wide area camera calibration using virtual calibration objects. In: Proceedings of the CVPR, vol. 2, pp. 520–527 (2000)

    Google Scholar 

  5. Svoboda, T., Hug, H., Van Gool, L.: ViRoom–Low Cost Synchronized Multicamera System and Its Self-calibration. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 515–522. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Läbe, T., Förstner, W.: Automatic relative orientation of images. In: Proceedings of the 5th Turkish-German Joint Geodetic Days (2006)

    Google Scholar 

  7. Bajramovic, F., Denzler, J.: Global uncertainty-based selection of relative poses for multi camera calibration. In: Proceedings of the BMVC, vol. 2, pp. 745–754 (2008)

    Google Scholar 

  8. Sinha, S., Pollefeys, M.: Towards calibrating a pan-tilt-zoom cameras network. In: Proceedings of the IEEE Workshop on Omnidirectional Vision (2004)

    Google Scholar 

  9. Chippendale, P., Tobia, F.: Collective calibration of active camera groups. In: IEEE Conf. on Advanced Video and Signal Based Surveillance, pp. 456–461 (2005)

    Google Scholar 

  10. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: BMVC, pp. 384–393 (2002)

    Google Scholar 

  11. Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  12. Brückner, M., Bajramovic, F., Denzler, J.: Geometric and probabilistic image dissimilarity measures for common field of view detection. In: Proceedings of the CVPR, pp. 2052–2057 (2009)

    Google Scholar 

  13. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  14. Nistér, D.: An efficient solution to the five-point relative pose problem. PAMI 26, 756–770 (2004)

    Google Scholar 

  15. Fischler, M.A., Bolles, R.C.: Random Sample Consensus: a Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  16. Schiller, I.: MIP - MultiCameraCalibration, http://mip.informatik.uni-kiel.de/tiki-index.php?page=Calibration (Last visited on 22-04-2010)

  17. Heikkila, J., Silvén, O.: A Four-step Camera Calibration Procedure with Implicit Image Correction. In: Proceedings of the CVPR, pp. 1106–1112 (1997)

    Google Scholar 

  18. McGill, R., Tukey, J., Larsen, W.A.: Variations of Boxplots. The American Statistician 32, 12–16 (1978)

    Article  Google Scholar 

  19. Tsai, R.Y., Lenz, R.K.: A new technique for fully autonomous and efficient 3d robotics hand/eye calibration. IEEE Transactions on Robotics and Automation 5(3), 345–357 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brückner, M., Denzler, J. (2010). Active Self-calibration of Multi-camera Systems. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds) Pattern Recognition. DAGM 2010. Lecture Notes in Computer Science, vol 6376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15986-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15986-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15985-5

  • Online ISBN: 978-3-642-15986-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics