Skip to main content

Symbolic-Numeric Algorithms for Computer Analysis of Spheroidal Quantum Dot Models

  • Conference paper
Book cover Computer Algebra in Scientific Computing (CASC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6244))

Included in the following conference series:

Abstract

A computational scheme for solving elliptic boundary value problems with axially symmetric confining potentials using different sets of one-parameter basis functions is presented. The efficiency of the proposed symbolic-numerical algorithms implemented in Maple is shown by examples of spheroidal quantum dot models, for which energy spectra and eigenfunctions versus the spheroid aspect ratio were calculated within the conventional effective mass approximation. Critical values of the aspect ratio, at which the discrete spectrum of models with finite-wall potentials is transformed into a continuous one in strong dimensional quantization regime, were revealed using the exact and adiabatic classifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harrison, P.: Quantum Well, Wires and Dots. In: Theoretical and Computational Physics of Semiconductor Nanostructures. Wiley, New York (2005)

    Google Scholar 

  2. Gambaryan, K.M.: Interaction and Cooperative Nucleation of InAsSbP Quantum Dots and Pits on InAs(100) Substrate. Nanoscale. Res. Lett. (2009), doi:10.1007/s11671-009-9510-8

    Google Scholar 

  3. Wojs, A., Hawrylak, P., Fafard, S., Jacak, L.: Electronic structure and magneto-optics of self-assembled quantum dots. Phys. Rev. B 54, 5604–5608 (1996)

    Article  Google Scholar 

  4. Juharyan, L.A., Kazaryan, E.M., Petrosyan, L.S.: Electronic states and interband light absorption in semi-spherical quantum dot under the influence of strong magnetic field. Solid State Comm. 139, 537–540 (2006)

    Article  Google Scholar 

  5. Dvoyan, K.G., Hayrapetyan, D.B., Kazaryan, E.M., Tshantshapanyan, A.A.: Electron States and Light Absorption in Strongly Oblate and Strongly Prolate Ellipsoidal Quantum Dots in Presence of Electrical and Magnetic Fields. Nanoscale Res. Lett. 2, 601–608 (2007)

    Article  Google Scholar 

  6. Cantele, G., Ninno, D., Iadonisi, G.: Confined states in ellipsoidal quantum dots. J. Phys. Condens. Matt. 12, 9019–9036 (2000)

    Article  Google Scholar 

  7. Trani, F., Cantele, G., Ninno, D., Iadonisi, G.: Tight-binding calculation of the optical absorption cross section of spherical and ellipsoidal silicon nanocrystals. Phys. Rev. B 72, 075423 (2005)

    Article  Google Scholar 

  8. Lepadatu, A.-M., Stavarache, I., Ciurea, M.L., Iancu, V.: The influence of shape and potential barrier on confinement energy levels in quantum dots. J. Appl. Phys. 107, 033721 (2010)

    Article  Google Scholar 

  9. Vinitsky, S.I., Gerdt, V.P., Gusev, A.A., Kaschiev, M.S., Rostovtsev, V.A., Samoilov, V.N., Tupikova, T.V., Chuluunbaatar, O.: A symbolic-numerical algorithm for the computation of matrix elements in the parametric eigenvalue problem. Programming and Computer Software 33, 105–116 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chuluunbaatar, O., Gusev, A., Gerdt, V., Kaschiev, M., Rostovtsev, V., Samoylov, V., Tupikova, T., Vinitsky, S.: A Symbolic-numerical algorithm for solving the eigenvalue problem for a hydrogen atom in the magnetic field: cylindrical coordinates. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 118–133. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Chuluunbaatar, O., Gusev, A.A., Abrashkevich, A.G., Amaya-Tapia, A., Kaschiev, M.S., Larsen, S.Y., Vinitsky, S.I.: KANTBP: A program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach. Comput. Phys. Commun. 177, 649–675 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chuluunbaatar, O., Gusev, A.A., Gerdt, V.P., Rostovtsev, V.A., Vinitsky, S.I., Abrashkevich, A.G., Kaschiev, M.S., Serov, V.V.: POTHMF: A program for computing potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field. Comput. Phys. Commun. 178, 301–330 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: ODPEVP: A program for computing eigenvalues and eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoined Sturm-Liouville problem. Comput. Phys. Commun. 180, 1358–1375 (2009)

    Article  MATH  Google Scholar 

  14. Vinitsky, S.I., Chuluunbaatar, O., Gerdt, V.P., Gusev, A.A., Rostovtsev, V.A.: Symbolic-numerical algorithms for solving parabolic quantum well problem with hydrogen-like impurity. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 334–349. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Wiley, New York (1964)

    MATH  Google Scholar 

  16. Born, M., Huang, X.: Dynamical Theory of Crystal Lattices. The Clarendon Press, Oxford (1954)

    MATH  Google Scholar 

  17. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    MATH  Google Scholar 

  18. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1. Wiley, Chichester (1989)

    Book  MATH  Google Scholar 

  19. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  20. Schultz, M.H.: L 2 Error Bounds for the Rayleigh-Ritz-Galerkin Method. SIAM J. Numer. Anal. 8, 737–748 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  21. Harper, P.G.: Single Band Motion of Conduction Electrons in a Uniform Magnetic Field. Proc. Phys. Soc. A 68, 874–878 (1955)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gusev, A.A. et al. (2010). Symbolic-Numeric Algorithms for Computer Analysis of Spheroidal Quantum Dot Models. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2010. Lecture Notes in Computer Science, vol 6244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15274-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15274-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15273-3

  • Online ISBN: 978-3-642-15274-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics