Skip to main content

α lean TA P: A Declarative Theorem Prover for First-Order Classical Logic

  • Conference paper
Logic Programming (ICLP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5366))

Included in the following conference series:

Abstract

We present α lean TA P, a declarative tableau-based theorem prover written as a pure relation. Like lean TA P, on which it is based, α lean TA P can prove ground theorems in first-order classical logic. Since it is declarative, α lean TA P generates theorems and accepts non-ground theorems and proofs. The lack of mode restrictions also allows the user to provide guidance in proving complex theorems and to ask the prover to instantiate non-ground parts of theorems. We present a complete implementation of α lean TA P, beginning with a translation of lean TA P into αKanren, an embedding of nominal logic programming in Scheme. We then show how to use a combination of tagging and nominal unification to eliminate the impure operators inherited from lean TA P, resulting in a purely declarative theorem prover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckert, B., Posegga, J.: leanTAP: Lean tableau-based deduction. Journal of Automated Reasoning 15(3), 339–358 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Byrd, W.E., Friedman, D.P.: αKanren: A fresh name in nominal logic programming. In: Proceedings of the 2007 Workshop on Scheme and Functional Programming, Université Laval Technical Report DIUL-RT-0701, pp. 79–90 (2007), http://www.cs.indiana.edu/~webyrd

  3. Mellish, C.S.: The Automatic Generation of Mode Declarations for Prolog Programs. Dept. of Artificial Intelligence, University of Edinburgh (1981)

    Google Scholar 

  4. Pitts, A.M.: Nominal logic: A first order theory of names and binding. In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 219–242. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Urban, C., Pitts, A., Gabbay, M.: Nominal unification. Theoretical Computer Science 323(1-3), 473–497 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sperber, M., Clinger, W., Dybvig, R., Flatt, M., van Straaten, A., Kelsey, R., Rees, J.: Revised 6 report on the algorithmic language Scheme (September 2007)

    Google Scholar 

  7. Baader, F., Snyder, W.: Unification theory. Handbook of Automated Reasoning 1, 446–533

    Google Scholar 

  8. Cheney, J., Urban, C.: αProlog: A logic programming language with names, binding and α-equivalence. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 269–283. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Byrd, W.E., Friedman, D.P.: From variadic functions to variadic relations

    Google Scholar 

  10. Friedman, D.P., Byrd, W.E., Kiselyov, O.: The Reasoned Schemer. The MIT Press, Cambridge (2005)

    Google Scholar 

  11. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer, Heidelberg (1996)

    Book  MATH  Google Scholar 

  12. Paulson, L.C.: A generic tableau prover and its integration with Isabelle. Journal of Universal Computer Science 5(3), 73–87 (1999)

    MathSciNet  MATH  Google Scholar 

  13. Pelletier, F.: Seventy-five problems for testing automatic theorem provers. Journal of Automated Reasoning 2(2), 191–216 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kiselyov, O., Shan, C., Friedman, D., Sabry, A.: Backtracking, interleaving, and terminating monad transformers (functional pearl). ACM SIGPLAN Notices 40(9), 192–203 (2005)

    Article  MATH  Google Scholar 

  15. Sutcliffe, G., Suttner, C.: The TPTP Problem Library. Journal of Automated Reasoning 21(2), 135–277 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Beckert, B., Posegga, J.: The lean TA P-FAQ: Frequently asked questions about lean TA P, http://www.uni-koblenz.de/~beckert/pub/LeanTAP_FAQ.pdf

  17. Manthey, R., Bry, F.: SATCHMO: A theorem prover implemented in Prolog. In: Proceedings of the 9th International Conference on Automated Deduction, pp. 415–434 (1988)

    Google Scholar 

  18. Stickel, M.: A Prolog technology theorem prover. In: Proceedings of the 9th International Conference on Automated Deduction, pp. 752–753 (1988)

    Google Scholar 

  19. Christiansen, H.: Automated reasoning with a constraint-based metainterpreter. The Journal of Logic Programming 37(1-3), 213–254 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kowalski, R.A.: Logic for Problem Solving. Prentice Hall PTR, Upper Saddle River (1979)

    MATH  Google Scholar 

  21. Pfenning, F., Elliot, C.: Higher-order abstract syntax. In: Proceedings of the SIGPLAN Conference on Programming Language Design and Implementation, vol. 23(7), pp. 199–208 (1988)

    Google Scholar 

  22. Felty, A., Miller, D.: Specifying theorem provers in a higher-order logic programming language. In: Proceedings of the 9th International Conference on Automated Deduction, pp. 61–80 (1988)

    Google Scholar 

  23. Pfenning, F., Schurmann, C.: System description: Twelf—a meta-logical framework for deductive systems. In: Proceedings of the 16th International Conference on Automated Deduction, pp. 202–206 (1999)

    Google Scholar 

  24. Friedman, D.P., Kiselyov, O.: A declarative applicative logic programming system, http://kanren.sourceforge.net

  25. Lisitsa, A.: λleanTAP: lean deduction in λProlog. Technical report, ULCS-03-017, University of Liverpool, Department of Computer Science (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Near, J.P., Byrd, W.E., Friedman, D.P. (2008). α lean TA P: A Declarative Theorem Prover for First-Order Classical Logic. In: Garcia de la Banda, M., Pontelli, E. (eds) Logic Programming. ICLP 2008. Lecture Notes in Computer Science, vol 5366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89982-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89982-2_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89981-5

  • Online ISBN: 978-3-540-89982-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics