Skip to main content

An Integrated QAP-Based Approach to Visualize Patterns of Gene Expression Similarity

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4828))

Abstract

This paper illustrates how the Quadratic Assignment Problem (QAP) is used as a mathematical model that helps to produce a visualization of microarray data, based on the relationships between the objects (genes or samples). The visualization method can also incorporate the result of a clustering algorithm to facilitate the process of data analysis. Specifically, we show the integration with a graph-based clustering algorithm that outperforms the results against other benchmarks, namely k −means and self-organizing maps. Even though the application uses gene expression data, the method is general and only requires a similarity function being defined between pairs of objects. The microarray dataset is based on the budding yeast (S. cerevisiae). It is composed of 79 samples taken from different experiments and 2,467 genes. The proposed method delivers an automatically generated visualization of the microarray dataset based on the integration of the relationships coming from similarity measures, a clustering result and a graph structure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shannon, P., Markiel, A., Ozier, O., Baliga, N., Wang, J., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research 13, 2498–2504 (2003)

    Article  Google Scholar 

  2. Kohler, J., Baumbach, J., Taubert, J., Specht, M., Skusa, A., Ruegg, A., Rawlings, C., Verrier, P., Philippi, S.: Graph-based analysis and visualization of experimental results with ondex. Bioinformatics 22(11), 1383–1390 (2006)

    Article  Google Scholar 

  3. Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998)

    Article  Google Scholar 

  4. Tavazoie, S., Hughes, J., Campbell, M., Cho, R., Church, G.: Systematic determination of genetic network architecture. Nat. Genet. (22), 281–285 (1999)

    Article  Google Scholar 

  5. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E., Golub, T.: Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. (96), 2907–2912 (1999)

    Article  Google Scholar 

  6. Burkard, R., Çela, E., Pardalos, P., Pitsoulis, L.: The quadratic assignment problem. In: Pardalos, P., Du, D. (eds.) Handbook of Combinatorial Optimization, pp. 241–338. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  7. Taillard, E.: Robust taboo search for the quadratic assignment problem. Parallel Computing 17(4-5), 443–455 (1991)

    Article  MathSciNet  Google Scholar 

  8. Oliveira, C., Pardalos, P., Resende, M.: Grasp with path-relinking for the quadratic assignment problem. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 356–368. Springer, Heidelberg (2004)

    Google Scholar 

  9. González-Barrios, J., Quiroz, A.: A clustering procedure based on the comparison between the k nearest neighbors graph and the minimal spanning tree. Statistics & Probability Letters 62(1), 23–34 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Inostroza-Ponta, M., Berretta, R., Mendes, A., Moscato, P.: An automatic graph layout procedure to visualize correlated data. In: Bramer, M. (ed.) Artificial Intelligence in Theory and Practice: Ifip 19th World Computer Congress. IFIP International Federation for Information Processing, vol. 217, pp. 179–188. Springer, Heidelberg (2006)

    Google Scholar 

  11. Shamir, R., Maron-Katz, A., Tanay, A., Linhart, C., Steinfeld, I., Sharan, R., Shiloh, Y., Elkon, R.: Expander-an integrative program suite for microarray data analysis. BMC Bioinformatics 6(232) (2005)

    Google Scholar 

  12. Gasch, A., Eisen, M.: Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biology 3(11) (2002)

    Google Scholar 

  13. Handl, J., Knowles, J.: Multiobjective clustering with automatic determination of the number of clusters. Technical Report TR-COMPSYSBIO-2004-02, UMIST, Manchester, UK (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marcus Randall Hussein A. Abbass Janet Wiles

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Inostroza-Ponta, M., Mendes, A., Berretta, R., Moscato, P. (2007). An Integrated QAP-Based Approach to Visualize Patterns of Gene Expression Similarity. In: Randall, M., Abbass, H.A., Wiles, J. (eds) Progress in Artificial Life. ACAL 2007. Lecture Notes in Computer Science(), vol 4828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76931-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76931-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76930-9

  • Online ISBN: 978-3-540-76931-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics