Skip to main content

Numerical Attributes in Decision Trees: A Hierarchical Approach

  • Conference paper
Advances in Intelligent Data Analysis V (IDA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2810))

Included in the following conference series:

Abstract

Decision trees are probably the most popular and commonly-used classification model. They are recursively built following a top-down approach (from general concepts to particular examples) by repeated splits of the training dataset. When this dataset contains numerical attributes, binary splits are usually performed by choosing the threshold value which minimizes the impurity measure used as splitting criterion (e.g. C4.5 gain ratio criterion or CART Gini’s index). In this paper we propose the use of multi-way splits for continuous attributes in order to reduce the tree complexity without decreasing classification accuracy. This can be done by intertwining a hierarchical clustering algorithm with the usual greedy decision tree learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berzal, F., Cubero, J.C., Sánchez, D., Serrano, J.M.: ART: A hybrid classification model. Machine Learning (2003) (to be published)

    Google Scholar 

  2. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth, California (1984) ISBN 0-534-98054-6

    MATH  Google Scholar 

  3. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: Proceedings of the 12th International Conference on Machine Learning, pp. 194–202. Morgan Kaufmann, Los Altos (1995)

    Google Scholar 

  4. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuousvalued attributes for classification learning. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence, pp. 1022–1027 (1993)

    Google Scholar 

  5. Gehrke, J., Ganti, V., Ramakrishnan, R., Loh, W.-Y.: BOAT - Optimistic Decision Tree Construction. In: Proceedings of the 1999 ACM SIGMOD international conference on Management of Data, Philadelphia, PA, USA, May 31-June 3, pp. 169–180 (1999a)

    Google Scholar 

  6. Gehrke, J., Loh, W.-Y., Ramakrishnan, R.: Classification and regression: money can grow on trees. In: Tutorial notes, KDD 1999, San Diego, California, USA, August 15-18, pp. 1–73 (1999b)

    Google Scholar 

  7. Gehrke, J., Ramakrishnan, R., Ganti, V.: RainForest – A Framework for Fast Decision Tree Construction of Large Datasets. Data Mining and Knowledge Discovery 4(2/3), 127–162 (2000)

    Article  Google Scholar 

  8. Han, J., Kamber, M.: Data Mining. Concepts and Techniques. Morgan Kaufmann, USA (2001) ISBN 1-55860-489-8

    Google Scholar 

  9. Ho, K.M., Scott, P.D.: Zeta: A global method for discretization of continuous variables. 3rd International Conferemce on Knowledge Discovery and Data Mining (KDD 1997), Newport Beach, pp. 191–194. AAAI Press, Menlo Park (1997)

    Google Scholar 

  10. Holte, R.C.: Very simple classification rules perform well on most commonly used datasets. Machine Learning 11, 63–90 (1993)

    Article  MATH  Google Scholar 

  11. Hussain, F., Liu, H., Tan, C.L., Dash, M.: Discretization: An enabling technique. The National University of Singapore, School of Computing, TRC6/99 (June 1999)

    Google Scholar 

  12. Loh, W.-Y., Shih, Y.-S.: Split Selection Methods for Classification Trees. Statistica Sinica 7, 815–840 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Lopez de Mantaras, R.: A Distance-Based Attribute Selection Measure for Decision Tree Induction. Machine Learning 6, 81–92 (1991)

    Google Scholar 

  14. Martin, J.K.: An Exact Probability Metric for Decision Tree Splitting and Stopping. Machine Learning 28, 257–291 (1997)

    Article  Google Scholar 

  15. Mehta, M., Agrawal, R., Rissanen, J.: SLIQ: A Fast Scalable Classifier for Data Mining. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 18–32. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  16. Quinlan, J.R.: Induction on Decision Trees. Machine Learning 1, 81–106 (1986a)

    Google Scholar 

  17. Quinlan, J.R.: Learning Decision Tree Classifiers. ACM Computing Surveys, 28(1), 71–72 (1986b)

    Article  Google Scholar 

  18. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993) ISBN 1-55860-238-0

    Google Scholar 

  19. Quinlan, J.R.: Improved use of continuous attributes. C4.5. Journal of Artificial Intelligence Research 4, 77–90 (1996)

    MATH  Google Scholar 

  20. Rasmussen, E.: Clustering algorithms. In: Frakes, W., Baeza-Yates, E. (eds.) Information Retrieval: Data Structures and Algorithms, ch. 16 (1992)

    Google Scholar 

  21. Rastogi, R., Shim, K.: PUBLIC: A Decision Tree Classifier that integrates building and pruning. Data Mining and Knwoledge Discovery 4(4), 315–344 (2000)

    Article  MATH  Google Scholar 

  22. Shafer, J.C., Agrawal, R., Mehta, M.: SPRINT: A Scalable Parallel Classifier for Data Mining. In: VLDB 1996, Mumbai (Bombay), India, September 3-6, pp. 544–555 (1996)

    Google Scholar 

  23. Ullman, J.: Data Mining Lecture Notes. Stanford University CS345 Course on Data Mining, Spring (2000), http://www-db.stanford.edu/_Nullman/mining/mining.html

  24. Van de Merckt, T.: Decision trees in numerical attribute spaces. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence, pp. 1016–1021 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berzal, F., Cubero, JC., Marín, N., Sánchez, D. (2003). Numerical Attributes in Decision Trees: A Hierarchical Approach. In: R. Berthold, M., Lenz, HJ., Bradley, E., Kruse, R., Borgelt, C. (eds) Advances in Intelligent Data Analysis V. IDA 2003. Lecture Notes in Computer Science, vol 2810. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45231-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45231-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40813-0

  • Online ISBN: 978-3-540-45231-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics