Skip to main content

Spectral Image Visualization Using Generative Adversarial Networks

  • Conference paper
  • First Online:
PRICAI 2018: Trends in Artificial Intelligence (PRICAI 2018)

Abstract

Spectral images captured by satellites and radio-telescopes are analyzed to obtain information about geological compositions distributions, distant asters as well as undersea terrain. Spectral images usually contain tens to hundreds of continuous narrow spectral bands, so the visualization based on information fusion and dimensional reduction is required for proper display on a trichromatic monitor which is important for spectral image processing and analysis system. The visualizations of spectral images should preserve as much information as possible from the original signal and facilitate image interpretation. However, most of the existing visualization methods display spectral images in false colors, which contradicts with human’s expectation and experience. In this paper, we present a novel visualization method based on generative adversarial network (GAN) to display spectral images in natural colors, in which a structure loss and an adversarial loss are combined to form a new loss function. The adversarial loss fits the visualized image to the natural image distribution using a discriminator network that is trained to distinguish false-color images from natural-color images. At the same time, we use an improved cycle loss as the structure constraint to guarantee structure consistency. Experimental results show that our method is able to generate structure-preserved and natural-looking visualizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. ArXiv e-prints, January 2017

    Google Scholar 

  2. Bachmann, C.M., Ainsworth, T.L., Fusina, R.A.: Exploiting manifold geometry in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 43(3), 441–454 (2005)

    Article  Google Scholar 

  3. Connah, D., Drew, M.S., Finlayson, G.D.: Spectral edge image fusion: theory and applications. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014 Part V. LNCS, vol. 8693, pp. 65–80. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_5

    Chapter  Google Scholar 

  4. Cui, M., Razdan, A., Hu, J., Wonka, P.: Interactive hyperspectral image visualization using convex optimization. IEEE Trans. Geosci. Remote Sens. 47(6), 1673–1684 (2009)

    Article  Google Scholar 

  5. Goodfellow, I.J., et al.: Generative adversarial networks. arXiv:Machine Learning (2014)

  6. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of Wasserstein GANs. ArXiv e-prints, March 2017

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. ArXiv e-prints, December 2015

    Google Scholar 

  8. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. ArXiv e-prints, April 2017

    Google Scholar 

  9. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and \(<\)0.5MB model size. arXiv:1602.07360 (2016)

  10. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Computer Vision and Pattern Recognition, pp. 1125–1134 (2016)

    Google Scholar 

  11. Jacobson, N.P., Gupta, M.R.: Design goals and solutions for display of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 43(11), 2684–2692 (2005)

    Article  Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Kotwal, K., Chaudhuri, S.: Visualization of hyperspectral images using bilateral filtering. IEEE Trans. Geosci. Remote Sens. 48(5), 2308–2316 (2010)

    Article  Google Scholar 

  14. Kotwal, K., Chaudhuri, S.: An optimization-based approach to fusion of hyperspectral images. IEEE J. Sel. Topics Appl. Earth Obs. Rem. Sens. 5(2), 501–509 (2012)

    Article  Google Scholar 

  15. Liao, D., Qian, Y., Zhou, J.: Visualization of hyperspectral imaging data based on manifold alignment. In: 2014 22nd International Conference on Pattern Recognition (ICPR), pp. 70–75. IEEE (2014)

    Google Scholar 

  16. Liao, D., Qian, Y., Zhou, J., Tang, Y.Y.: A manifold alignment approach for hyperspectral image visualization with natural color. IEEE Trans. Geosci. Remote Sens. 54(6), 3151–3162 (2016)

    Article  Google Scholar 

  17. Liao, D., Ye, M., Jia, S., Qian, Y.: Visualization of hyperspectral imagery based on manifold learning. In: 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1979–1982. IEEE (2013)

    Google Scholar 

  18. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  19. Mignotte, M.: A multiresolution Markovian fusion model for the color visualization of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 48(12), 4236–4247 (2010)

    Article  Google Scholar 

  20. Mignotte, M.: A bicriteria-optimization-approach-based dimensionality-reduction model for the color display of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 50(2), 501–513 (2012)

    Article  MathSciNet  Google Scholar 

  21. Mirza, M., Osindero, S.: Conditional generative adversarial nets. ArXiv e-prints, November 2014

    Google Scholar 

  22. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: International Conference on Learning Representations (2016)

    Google Scholar 

  23. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. ArXiv e-prints, June 2016

    Google Scholar 

  24. Su, H., Du, Q., Du, P.: Hyperspectral image visualization using band selection. IEEE J. Select. Topics Appl. Earth Observ. Remote Sens. 7(6), 2647–2658 (2014)

    Article  Google Scholar 

  25. Tyo, J.S., Konsolakis, A., Diersen, D.I., Olsen, R.C.: Principal-components-based display strategy for spectral imagery. IEEE Trans. Geosci. Remote Sens. 41(3), 708–718 (2003)

    Article  Google Scholar 

  26. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. ArXiv e-prints, July 2016

    Google Scholar 

  27. Yi, Z., Zhang, H., Tan, P., Gong, M.: DualGAN: unsupervised dual learning for image-to-image translation. ArXiv e-prints, April 2017

    Google Scholar 

  28. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593 (2017)

  29. Zhu, Y., Varshney, P.K., Chen, H.: Evaluation of ICA based fusion of hyperspectral images for color display, pp. 1–7 (2007)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China 61571393, and the National Key Research and Development Program of China 2018YFB0505000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyu Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, S., Liao, D., Qian, Y. (2018). Spectral Image Visualization Using Generative Adversarial Networks. In: Geng, X., Kang, BH. (eds) PRICAI 2018: Trends in Artificial Intelligence. PRICAI 2018. Lecture Notes in Computer Science(), vol 11012. Springer, Cham. https://doi.org/10.1007/978-3-319-97304-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97304-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97303-6

  • Online ISBN: 978-3-319-97304-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics