Skip to main content

Face Recognition Using Improved Extended Sparse Representation Classifier and Feature Descriptor

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10956))

Included in the following conference series:

  • 2446 Accesses

Abstract

Representing query samples, many methods based on sparse representation do not take into account the different importance of atoms. In this paper, we propose a new extended sparse weighted representation classifier (ESWRC). In ESWRC, we introduce a representativeness estimator, and use it to estimate the atom representativeness. The atom representativeness is used to construct the weights of atoms. The weighted atoms are used to represent the query samples. In addition, we propose a distinctive feature descriptor, called logarithmic weighted sum (LWS) feature descriptor, which combines the advantages of discrete orthonormal S-transform feature, Gabor feature, covariance and logarithmic operation. We combine ESWRC and LWS for face recognition and call it improved extended sparse representation classifier and feature descriptor (IESRCFD) method. Experimental results show that IESRCFD outperforms many state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, Z.W., Shan, S.G., Wang, R.P., Zhang, H.H., Lao, S.H., Kuerban, A., Chen, X.L.: A benchmark and comparative study of video-based face recognition on COX face database. IEEE Trans. Image Process. 24, 5967–5981 (2015)

    Article  MathSciNet  Google Scholar 

  2. Adbi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2, 433–459 (2010)

    Article  Google Scholar 

  3. Etemad, K., Chellapa, R.: Discriminant analysis for recognition of human face images. J. Opt. Soc. Am. A 14, 125–142 (1997)

    Article  Google Scholar 

  4. He, X.F., Niyogi, P.: Locality preserving projections. In: Advances in Neural Information Processing Systems, Canada (2003)

    Google Scholar 

  5. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognit. Neurosci. 3, 71–86 (1991)

    Article  Google Scholar 

  6. Huang, G.B., Ding, X., Zhou, H.: Optimization method based extreme learning machine for classification. Neurocomputing 74, 155–163 (2010)

    Article  Google Scholar 

  7. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 210–227 (2009)

    Article  Google Scholar 

  8. Yang, M., Zhang, L., Yang, J., Zhang, D.: Regularized robust coding for face recognition. IEEE Trans. Image Process. 22, 1753–1766 (2013)

    Article  MathSciNet  Google Scholar 

  9. Deng, W.H., Hu, J.N., Guo, J.: Extended SRC: undersampled face recognition via intraclass variant dictionary. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1864–1870 (2012)

    Article  Google Scholar 

  10. Jourlin, M., Pinoli, J.C.: Logarithmic image processing: the mathematical and physical framework for the representation and processing of transmitted images. Adv. Imaging Electron. Phys. 115, 130–196 (2001)

    Google Scholar 

  11. Mandal, D.: Human visual system based object detection and recognition and introduction of logarithmic local binary patterns for face recognition. M.S. thesis, TUFTS Univ (2012)

    Google Scholar 

  12. Drabycz, S., Stockwell, R.G., Mitchell, J.R.: Image texture characterization using the discrete orthonormal s-transform. J. Digit. Imaging. 22, 696–708 (2009)

    Article  Google Scholar 

  13. Gibson, P.C., Lamoureux, M.P., Margrave, G.F.: Letter to the editor: stokwell and wavelet transforms. J. Fourier Anal. Appl. 12, 713–721 (2006)

    Article  MathSciNet  Google Scholar 

  14. Stockwell, R.G.: A basis for efficient representation of the S-transform. Digit. Signal Proc. 17, 371–393 (2007)

    Article  Google Scholar 

  15. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)

    MATH  Google Scholar 

  16. Boiman, O., Shechtman, Irani, M.: In defense of nearest-neighbor based image recognition. In: Proceedings of IEEE Conference Computer Vision Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  17. Luo, M.X., Zhang, K.: A hybrid approach combining extreme learning machine and sparse representation for image recognition. Eng. Appl. Artif. Intell. 27, 228–235 (2014)

    Article  Google Scholar 

  18. Yang, M., Zhang, L., Yang, J., Zhang, D.: Robust sparse coding for face recognition. In: Proceedings of IEEE Conference Compute Vision Pattern Recognition, pp. 625–632 (2011)

    Google Scholar 

  19. Gao, S.H., Tsang, I.W.H., Chia, L.T.: Sparse representation with kernels. IEEE Trans. Image Process. 22, 423–434 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Harandi, M.T., Sanderson, C., Hartley, R., Lovell, B.C.: Sparse coding and dictionary learning for symmetric positive definite matrices: a kernel approach. In: Proceedings of IEEE European Conference on Computer Vision, pp. 216–229 (2012)

    Chapter  Google Scholar 

  21. Sivalingam, R., Boley, D., Morellas, V., Papanikolopoulos, N.: Tensor sparse coding for region covariance. In: Proceedings of IEEE European Conference on Computer Vision, pp. 722–735 (2010)

    Chapter  Google Scholar 

  22. Yang, M., Zhang, L.: Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary. In: Proceedings of IEEE European Conference on Computer Vision, pp. 448–461 (2010)

    Chapter  Google Scholar 

  23. Guo, K., Ishwar, P., Konrad, J.: Action recognition using sparse representation on covariance manifolds of optical flow. In: Proceedings of IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 188–195 (2010)

    Google Scholar 

Download references

Acknowledgments

The work is supported in part by National Natural Science Foundation of China under grants 61771145, 61371148.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liao, M., Gu, X. (2018). Face Recognition Using Improved Extended Sparse Representation Classifier and Feature Descriptor. In: Huang, DS., Gromiha, M., Han, K., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2018. Lecture Notes in Computer Science(), vol 10956. Springer, Cham. https://doi.org/10.1007/978-3-319-95957-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95957-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95956-6

  • Online ISBN: 978-3-319-95957-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics