Skip to main content

On the Computational Complexity of ECDLP for Elliptic Curves in Various Forms Using Index Calculus

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10779))

Abstract

The security of elliptic curve cryptography is closely related to the computational complexity of the elliptic curve discrete logarithm problem (ECDLP). Today, the best practical attacks against ECDLP are exponential-time, generic discrete logarithm algorithms such as Pollard’s rho method. Recently, there is a line of research on index calculus for ECDLP started by Semaev, Gaudry, and Diem. Under certain heuristic assumptions, such algorithms could lead to subexponential attacks to ECDLP in some cases. In this paper, we investigate the computational complexity of ECDLP for elliptic curves in various forms—including Hessian, Montgomery, (twisted) Edwards, and Weierstrass using index calculus. The research question we would like to answer is: Using index calculus, is there any significant difference in the computational complexity of ECDLP for elliptic curves in various forms? We will provide some empirical evidence and insights showing an affirmative answer in this paper.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bailey, D.V., Paar, C.: Optimal extension fields for fast arithmetic in public-key algorithms. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 472–485. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055748

    Chapter  Google Scholar 

  2. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_14

    Chapter  Google Scholar 

  3. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards curves. IACR Cryptology ePrint Archive, 2008:13 (2008)

    Google Scholar 

  4. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. IACR Cryptology ePrint Archive, 2007:286 (2007)

    Google Scholar 

  5. Diem, C.: On the discrete logarithm problem in class groups of curves. Math. Comput. 80(273), 443–475 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Faugère, J., Gaudry, P., Huot, L., Renault, G.: Using symmetries in the index calculus for elliptic curves discrete logarithm. J. Cryptol. 27(4), 595–635 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Faugère, J.-C., Perret, L., Petit, C., Renault, G.: Improving the complexity of index calculus algorithms in elliptic curves over binary fields. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 27–44. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_4

    Chapter  Google Scholar 

  8. Galbraith, S.D., Gaudry, P.: Recent progress on the elliptic curve discrete logarithm problem. Des. Codes Cryptogr. 78(1), 51–72 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Galbraith, S.D., Gebregiyorgis, S.W.: Summation polynomial algorithms for elliptic curves in characteristic two. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 409–427. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13039-2_24

    Google Scholar 

  10. Gaudry, P.: Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem. J. Symb. Comput. 44(12), 1690–1702 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang, Y.-J., Petit, C., Shinohara, N., Takagi, T.: Improvement of Faugère et al.’s method to solve ECDLP. In: Sakiyama, K., Terada, M. (eds.) IWSEC 2013. LNCS, vol. 8231, pp. 115–132. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41383-4_8

    Chapter  Google Scholar 

  12. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Math. Comput. 48, 243–264 (1987). http://links.jstor.org/sici?sici=0025-5718(198701)48:177<243:STPAEC>2.0.CO;2-3

  13. Petit, C., Quisquater, J.: On polynomial systems arising from a Weil descent. IACR Cryptology ePrint Archive 2012:146 (2012)

    Google Scholar 

  14. Pollard, J.M.: Monte Carlo methods for index computation mod \(p\). Math. Comput. 32, 918–924 (1978)

    MathSciNet  MATH  Google Scholar 

  15. Semaev, I.A.: Summation polynomials and the discrete logarithm problem on elliptic curves. IACR Cryptology ePrint Archive 2004:31 (2004)

    Google Scholar 

  16. Smart, N.P.: The Hessian form of an elliptic curve. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 118–125. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1_11

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is partially supported by JSPS KAKENHI Grant (C)(JP15K00183) and (JP15K00189) and Japan Science and Technology Agency, CREST and Infrastructure Development for Promoting International S&T Cooperation and Project for Establishing a Nationwide Practical Education Network for IT Human Resources Development, Education Network for Practical Information Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Mou Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, CM., Kodera, K., Miyaji, A. (2018). On the Computational Complexity of ECDLP for Elliptic Curves in Various Forms Using Index Calculus. In: Kim, H., Kim, DC. (eds) Information Security and Cryptology – ICISC 2017. ICISC 2017. Lecture Notes in Computer Science(), vol 10779. Springer, Cham. https://doi.org/10.1007/978-3-319-78556-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78556-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78555-4

  • Online ISBN: 978-3-319-78556-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics