Skip to main content

New Integer Linear Programming Models for the Vertex Coloring Problem

  • Conference paper
  • First Online:
LATIN 2018: Theoretical Informatics (LATIN 2018)

Abstract

The vertex coloring problem asks for the minimum number of colors that can be assigned to the vertices of a given graph such that each two neighbors have different colors. The problem is NP-hard. Here, we introduce new integer linear programming formulations based on partial-ordering. They have the advantage that they are as simple to work with as the classical assignment formulation, since they can be fed directly into a standard integer linear programming solver. We evaluate our new models using Gurobi and show that our new simple approach is a good alternative to the best state-of-the-art approaches for the vertex coloring problem. In our computational experiments, we compare our formulations with the classical assignment formulation and the representatives formulation on a large set of benchmark graphs as well as randomly generated graphs of varying size and density. The evaluation shows that the partial-ordering based models dominate both formulations for sparse graphs, while the representatives formulation is the best for dense graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://ls11-www.cs.tu-dortmund.de/mutzel/colorbenchmarks.

References

  1. Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer programming: a new approach to integrate CP and MIP. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 6–20. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68155-7_4

    Chapter  Google Scholar 

  2. Burke, E.K., Mareček, J., Parkes, A.J., Rudová, H.: A supernodal formulation of vertex colouring with applications in course timetabling. Ann. Oper. Res. 179(1), 105–130 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Campêlo, M.B., Campos, V.A., Corrêa, R.C.: On the asymmetric representatives formulation for the vertex coloring problem. Discrete Appl. Math. 156(7), 1097–1111 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Campêlo, M.B., Corrêa, R.C., Frota, Y.: Cliques, holes and the vertex coloring polytope. Inf. Process. Lett. 89(4), 159–164 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Campos, V., Corrêa, R.C., Delle Donne, D., Marenco, J., Wagler, A.: Polyhedral studies of vertex coloring problems: The asymmetric representatives formulation. ArXiv e-prints, August 2015

    Google Scholar 

  6. Cornaz, D., Furini, F., Malaguti, E.: Solving vertex coloring problems as maximum weight stable set problems. Disc. Appl. Math. 217(Part 2), 151–162 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benchmarking machines and testing solutions (2002). http://mat.gsia.cmu.edu/COLOR02/BENCHMARK/benchmark.tar

  8. Eppstein, D.: Small maximal independent sets and faster exact graph coloring. J. Graph Algorithms Appl. 7(2), 131–140 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness. Freeman, San Francisco, CA, USA (1979)

    Google Scholar 

  10. Gualandi, S. Chiarandini, M.: Graph coloring instances (2017). https://sites.google.com/site/graphcoloring/vertex-coloring

  11. Gualandi, S., Malucelli, F.: Exact solution of graph coloring problems via constraint programming and column generation. INFORMS J. Comput. 24(1), 81–100 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hansen, P., Labbé, M., Schindl, D.: Set covering and packing formulations of graph coloring: algorithms and first polyhedral results. Discrete Optim. 6(2), 135–147 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Held, S., Cook, W., Sewell, E.: Maximum-weight stable sets and safe lower bounds for graph coloring. Math. Program. Comput. 4(4), 363–381 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jabrayilov, A., Mallach, S., Mutzel, P., Rüegg, U., von Hanxleden, R.: Compact layered drawings of general directed graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 209–221. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2_17

    Chapter  Google Scholar 

  15. Jabrayilov, A., Mutzel, P. (2017). https://ls11-www.cs.tu-dortmund.de/mutzel/colorbenchmarks

  16. Johnson, D.S., Trick, M. (eds.): Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, 1993. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26. AMS, Providence (1996)

    Google Scholar 

  17. Malaguti, E., Monaci, M., Toth, P.: An exact approach for the vertex coloring problem. Discrete Optim. 8(2), 174–190 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Malaguti, E., Toth, P.: A survey on vertex coloring problems. Int. Trans. Oper. Res. 17, 1–34 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mehrotra, A., Trick, M.: A column generation approach for graph coloring. INFORMS J. Comput. 8(4), 344–354 (1996)

    Article  MATH  Google Scholar 

  20. Méndez-Díaz, I., Zabala, P.: A branch-and-cut algorithm for graph coloring. Discrete Appl. Math. 154(5), 826–847 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Méndez-Díaz, I., Zabala, P.: A cutting plane algorithm for graph coloring. Discrete Appl. Math. 156(2), 159–179 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Segundo, P.S.: A new DSATUR-based algorithm for exact vertex coloring. Comput. Oper. Res. 39(7), 1724–1733 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sewell, E.: An improved algorithm for exact graph coloring. In: Johnson and Trick [16], pp. 359–373

    Google Scholar 

  24. Trick, M.: DIMACS graph coloring instances (2002). http://mat.gsia.cmu.edu/COLOR02/

Download references

Acknowledgements

This work was partially supported by DFG, RTG 1855.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adalat Jabrayilov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jabrayilov, A., Mutzel, P. (2018). New Integer Linear Programming Models for the Vertex Coloring Problem. In: Bender, M., Farach-Colton, M., Mosteiro, M. (eds) LATIN 2018: Theoretical Informatics. LATIN 2018. Lecture Notes in Computer Science(), vol 10807. Springer, Cham. https://doi.org/10.1007/978-3-319-77404-6_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77404-6_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77403-9

  • Online ISBN: 978-3-319-77404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics