Skip to main content

On Competitiveness of Nearest-Neighbor-Based Music Classification: A Methodological Critique

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10609))

Included in the following conference series:

Abstract

The traditional role of nearest-neighbor classification in music classification research is that of a straw man opponent for the learning approach of the hour. Recent work in high-dimensional indexing has shown that approximate nearest-neighbor algorithms are extremely scalable, yielding results of reasonable quality from billions of high-dimensional features. With such efficient large-scale classifiers, the traditional music classification methodology of aggregating and compressing the audio features is incorrect; instead the approximate nearest-neighbor classifier should be given an extensive data collection to work with. We present a case study, using a well-known MIR classification benchmark with well-known music features, which shows that a simple nearest-neighbor classifier performs very competitively when given ample data. In this position paper, we therefore argue that nearest-neighbor classification has been treated unfairly in the literature and may be much more competitive than previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aucouturier, J.J., Pachet, F.: Representing musical genre: a state of the art. J. New Music Res. 32(1), 83–93 (2003)

    Article  Google Scholar 

  2. Babenko, A., Lempitsky, V.S.: The inverted multi-index. TPAMI 37(6), 1247–1260 (2015)

    Article  Google Scholar 

  3. Babenko, A., Lempitsky, V.S.: Efficient indexing of billion-scale datasets of deep descriptors. In: Proceedings of CVPR, Las Vegas, NV, USA (2016)

    Google Scholar 

  4. Bergstra, J., Casagrande, N., Erhan, D., Eck, D., Kégl, B.: Aggregate features and ADABOOST for music classification. Mach. Learn. 65(2–3), 473–484 (2006)

    Article  Google Scholar 

  5. Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image classification. In: Proceedings of CVPR (2008)

    Google Scholar 

  6. Fabbri, F.: A theory of musical genres: two applications. Popular Music Perspect. 1, 52–81 (1981)

    Google Scholar 

  7. Gu\(\eth \)mundsson, G., Amsaleg, L., Jónsson, B.: Distributed high-dimensional index creation using Hadoop, HDFS and C++. In: Proceedings of CBMI (2012)

    Google Scholar 

  8. Gu\(\eth \)mundsson, G., Amsaleg, L., Jónsson, B., Franklin, M.J.: Towards engineering a web-scale multimedia service: a case study using Spark. In: Proceedings of MMSys (2017)

    Google Scholar 

  9. Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. TPAMI 33(1), 117–128 (2011)

    Article  Google Scholar 

  10. Knees, P., Schedl, M.: A survey of music similarity and recommendation from music context data. ACM TOMCCAP 10(1), 1–21 (2013)

    Article  Google Scholar 

  11. Knees, P., Schedl, M.: Music Similarity and Retrieval - An Introduction to Audio- and Web-based Strategies. Springer, Heidelberg (2016)

    Google Scholar 

  12. Lejsek, H., Jónsson, B., Amsaleg, L.: NV-Tree: nearest neighbours at the billion scale. In: Proceedings of ICMR (2011)

    Google Scholar 

  13. Li, T., Ogihara, M., Li, Q.: A comparative study on content-based music genre classification. In: Proceedings of SIGIR, Toronto, Canada (2003)

    Google Scholar 

  14. Moise, D., Shestakov, D., Gu\(\eth \)mundsson, G., Amsaleg, L.: Indexing and searching 100M images with map-reduce. In: Proceedings of ICMR (2013)

    Google Scholar 

  15. van den Oord, A., Dieleman, S., Schrauwen, B.: Deep content-based music recommendation. In: Proceedings of NIPS (2013)

    Google Scholar 

  16. van den Oord, A., Dieleman, S., Schrauwen, B.: Transfer learning by supervised pre-training for audio-based music classification. In: Proceedings of ISMIR (2014)

    Google Scholar 

  17. Pachet, F., Cazaly, D.: A taxonomy of musical genre. In: Proceedings of RIAO (2000)

    Google Scholar 

  18. Pálmason, H., Jónsson, B., Schedl, M., Knees, P.: Music genre classification revisited: An in-depth examination guided by music experts. In: Proceedings of CMMR (2017)

    Google Scholar 

  19. Panagakis, I., Benetos, E., Kotropoulos, C.: Music genre classification: a multilinear approach. In: Proceedings of ISMIR (2008)

    Google Scholar 

  20. Panagakis, Y., Kotropoulos, C., Arce, G.R.: Music genre classification via sparse representations of auditory temporal modulations. In: Proceedings of EUSIPCO (2009)

    Google Scholar 

  21. Prockup, M., Ehmann, A.F., Gouyon, F., Schmidt, E.M., Celma, Ò., Kim, Y.E.: Modeling genre with the music genome project: comparing human-labeled attributes and audio features. In: Proceedings of ISMIR (2015)

    Google Scholar 

  22. Schnitzer, D.: Indexing content-based music similarity models for fast retrieval in massive databases. Dissertation, Johannes Kepler University, Austria (2012)

    Google Scholar 

  23. Seyerlehner, K., Schedl, M., Knees, P., Sonnleitner, R.: A refined block-level feature set for classification, similarity and tag prediction. In: Proceedings of MIREX (2011)

    Google Scholar 

  24. Seyerlehner, K., Widmer, G., Pohle, T.: Fusing block-level features for music similarity estimation. In: Proceedings of Digital Audio Effects (DAFx) (2010)

    Google Scholar 

  25. Sturm, B.L.: An analysis of the GTZAN music genre dataset. In: Proceedings of MIRUM (2012)

    Google Scholar 

  26. Sturm, B.L.: Classification accuracy is not enough. JIIS 41, 371–406 (2013)

    Google Scholar 

  27. Sturm, B.L.: A survey of evaluation in music genre recognition. In: Nürnberger, A., Stober, S., Larsen, B., Detyniecki, M. (eds.) AMR 2012. LNCS, vol. 8382, pp. 29–66. Springer, Cham (2014). doi:10.1007/978-3-319-12093-5_2

    Google Scholar 

  28. Tzanetakis, G., Cook, P.: Musical genre classification of audio signals. IEEE Trans. Speech Audio Process. 10(5), 293–302 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Icelandic Student Research Fund grant 100390001, Austrian Science Fund (FWF) grant P25655 and Austrian FFG grant 858514 (SmarterJam).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Þór Jónsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pálmason, H., Jónsson, B.Þ., Amsaleg, L., Schedl, M., Knees, P. (2017). On Competitiveness of Nearest-Neighbor-Based Music Classification: A Methodological Critique. In: Beecks, C., Borutta, F., Kröger, P., Seidl, T. (eds) Similarity Search and Applications. SISAP 2017. Lecture Notes in Computer Science(), vol 10609. Springer, Cham. https://doi.org/10.1007/978-3-319-68474-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68474-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68473-4

  • Online ISBN: 978-3-319-68474-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics