Skip to main content

On the Combination of the Bernays–Schönfinkel–Ramsey Fragment with Simple Linear Integer Arithmetic

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10395))

Abstract

In general, first-order predicate logic extended with linear integer arithmetic is undecidable. We show that the Bernays-Schönfinkel-Ramsey fragment (\(\exists ^* \forall ^*\)-sentences) extended with a restricted form of linear integer arithmetic is decidable via finite ground instantiation. The identified ground instances can be employed to restrict the search space of existing automated reasoning procedures considerably, e.g., when reasoning about quantified properties of array data structures formalized in Bradley, Manna, and Sipma’s array property fragment. Typically, decision procedures for the array property fragment are based on an exhaustive instantiation of universally quantified array indices with all the ground index terms that occur in the formula at hand. Our results reveal that one can get along with significantly fewer instances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For any free-sort variable v that occurs in a clause \((\varLambda \,\Vert \, \varGamma \rightarrow \varDelta ) \in N\) exclusively in equations, we pretend that \(\varDelta \) contains an atom \(\text {False}_v(v)\), for a fresh predicate symbol \(\text {False}_v : \mathcal {S}\). This is merely a technical assumption. Without it, we would have to treat such variables v as a separate case in all definitions. The atom \(\text {False}_v(v)\) is not added “physically” to any clause.

References

  1. Abadi, A., Rabinovich, A., Sagiv, M.: Decidable fragments of many-sorted logic. J. Symbolic Comput. 45(2), 153–172 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alagi, G., Weidenbach, C.: NRCL – A model building approach to the Bernays-Schönfinkel fragment. In: Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS, vol. 9322, pp. 69–84. Springer, Cham (2015). doi:10.1007/978-3-319-24246-0_5

    Chapter  Google Scholar 

  3. Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol. 5749, pp. 84–99. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04222-5_5

    Chapter  Google Scholar 

  4. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 39–57. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2_3

    Chapter  Google Scholar 

  6. Bradley, A.R.: Safety Analysis of Systems. PhD thesis (2007)

    Google Scholar 

  7. Bradley, A.R., Manna, Z.: The Calculus of Computation – Decision Procedures with Applications to Verification. Springer, Heidelberg (2007)

    Google Scholar 

  8. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442. Springer, Heidelberg (2005). doi:10.1007/11609773_28

    Chapter  Google Scholar 

  9. Claessen, K., Lillieström, A., Smallbone, N.: Sort it out with monotonicity. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 207–221. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6_17

    Chapter  Google Scholar 

  10. Downey, P.J.: Undecidability of Presburger Arithmetic with a Single Monadic Predicate Letter. Technical report, Center for Research in Computer Technology. Harvard University (1972)

    Google Scholar 

  11. Fietzke, A., Weidenbach, C.: Superposition as a decision procedure for timed automata. Math. Comput. Sci. 6(4), 409–425 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ge, Y., Moura, L.: Complete instantiation for quantified formulas in satisfiabiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 306–320. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4_25

    Chapter  Google Scholar 

  13. Halpern, J.Y.: Presburger arithmetic with unary predicates is \(\Pi ^1_1\) complete. J. Symbolic Logic 56(2), 637–642 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Horbach, M., Voigt, M., Weidenbach, C.: On the combination of the Bernays-Schönfinkel-Ramsey fragment with simple linear integer arithmetic. ArXiv preprint, arXiv: 1705.08792 [cs.LO] (2017)

  15. Korovin, K.: Inst–Gen – A modular approach to instantiation-based automated reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 239–270. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37651-1_10

    Chapter  Google Scholar 

  16. Korovin, K.: Non-cyclic sorts for first-order satisfiability. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 214–228. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40885-4_15

    Chapter  Google Scholar 

  17. Kroening, D., Strichman, O.: Decision Procedures. Texts in Theoretical Computer Science. An EATCS Series, 2nd edn. Springer, Heidelberg (2016)

    Google Scholar 

  18. Kruglov, E., Weidenbach, C.: Superposition decides the first-order logic fragment over ground theories. Math. Comput. Sci. 6(4), 427–456 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput. Syst. Sci. 21(3), 317–353 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J. 36(5), 450–462 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53, 937–977 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Piskac, R., de Moura, L.M., Bjørner, N.: Deciding effectively propositional logic using DPLL and substitution sets. J. Autom. Reasoning 44(4), 401–424 (2010)

    Google Scholar 

  23. Putnam, H.: Decidability and essential undecidability. J. Symbolic Logic 22(1), 39–54 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  24. Voigt, M., Weidenbach, C.: Bernays-Schönfinkel-Ramsey with simple bounds is NEXPTIME-complete. ArXiv preprint, arXiv:1501.07209 [cs.LO] (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthias Horbach , Marco Voigt or Christoph Weidenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Horbach, M., Voigt, M., Weidenbach, C. (2017). On the Combination of the Bernays–Schönfinkel–Ramsey Fragment with Simple Linear Integer Arithmetic. In: de Moura, L. (eds) Automated Deduction – CADE 26. CADE 2017. Lecture Notes in Computer Science(), vol 10395. Springer, Cham. https://doi.org/10.1007/978-3-319-63046-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63046-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63045-8

  • Online ISBN: 978-3-319-63046-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics