Skip to main content

Weighted Non-locally Self-similarity Sparse Representation for Face Deblurring

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10116))

Included in the following conference series:

  • 1808 Accesses

Abstract

The human face is one of the most interesting subjects in various computer vision tasks. In recent years, significant progress has been made for generic image deblurring problem, but existing popular sparse representation based deblurring methods are not able to achieve excellent results on blurry face images. The failure of these methods mainly stems from the lack of local/non-local self-similarity prior knowledge. There are many similar non-local patches in the neighborhood of a given patch in a face image, therefore, this property should be effectively exploited to obtain a good estimation of the sparse coding coefficients. In this paper, we introduce the current weighted non-locally self-similarity (WNLSS) method [1], which is originally proposed to remove the noise for natural images, into the face deblurring model. There are two terms in the WNLSS sparse representation model, data fidelity term and regularization term. Based on the theoretical analysis, we show the properties of data fidelity term and regularization term also can fit well for face deblurring problem. The results also demonstrate that WNLSS method can achieve excellent performance in terms of both synthetic and real blurred face dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiang, J., Zhang, L., Yang, J.: Mixed noise removal by weighted encoding with sparse nonlocal regularization. IEEE Trans. Image Process. 23, 2651–2662 (2014)

    Article  MathSciNet  Google Scholar 

  2. Cho, S., Lee, S.: Fast motion deblurring. In: ACM SIGGRAPH Asia 2009 Papers, SIGGRAPH Asia 2009, pp. 145:1–145:8, ACM, New York (2009)

    Google Scholar 

  3. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. 27, 73:1–73:10 (2008)

    Google Scholar 

  4. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15549-9_12

    Chapter  Google Scholar 

  5. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2272–2279. IEEE (2009)

    Google Scholar 

  6. Dong, W., Zhang, L., Shi, G., Wu, X.: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 20, 1838–1857 (2011)

    Article  MathSciNet  Google Scholar 

  7. Sun, L., Cho, S., Wang, J., Hays, J.: Edge-based blur kernel estimation using patch priors. In: 2013 IEEE International Conference on Computational Photography (ICCP), pp. 1–8. IEEE (2013)

    Google Scholar 

  8. Pan, J., Hu, Z., Su, Z., Yang, M.-H.: Deblurring face images with exemplars. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 47–62. Springer, Cham (2014). doi:10.1007/978-3-319-10584-0_4

    Google Scholar 

  9. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2657–2664. IEEE (2011)

    Google Scholar 

  10. Oliveira, J.P., Bioucas-Dias, J.M., Figueiredo, M.A.: Adaptive total variation image deblurring: a majorization-minimization approach. Sig. Process. 89, 1683–1693 (2009)

    Article  MATH  Google Scholar 

  11. Cai, J.F., Ji, H., Liu, C., Shen, Z.: Framelet-based blind motion deblurring from a single image. IEEE Trans. Image Process. 21, 562–572 (2012)

    Article  MathSciNet  Google Scholar 

  12. Dong, W., Shi, G., Hu, X., Ma, Y.: Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE Trans. Image Process. 23, 4527–4538 (2014)

    Article  MathSciNet  Google Scholar 

  13. Chen, J., Yi, D., Yang, J., Zhao, G., Li, S.Z., Pietikainen, M.: Learning mappings for face synthesis from near infrared to visual light images. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 156–163. IEEE (2009)

    Google Scholar 

  14. Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 233–240. IEEE (2011)

    Google Scholar 

  15. Xu, L., Zheng, S., Jia, J.: Unnatural L0 sparse representation for natural image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1107–1114 (2013)

    Google Scholar 

  16. Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for image and video restoration. Multiscale Model. Simul. 7, 214–241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rubinstein, R., Bruckstein, A.M., Elad, M.: Dictionaries for sparse representation modeling. Proc. IEEE 98, 1045–1057 (2010)

    Article  Google Scholar 

  18. Elad, M., Yavneh, I.: A plurality of sparse representations is better than the sparsest one alone. IEEE Trans. Inf. Theor. 55, 4701–4714 (2009)

    Article  MathSciNet  Google Scholar 

  19. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54, 4311–4322 (2006)

    Article  Google Scholar 

  20. Dong, W., Zhang, L., Shi, G., Li, X.: Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 22, 1620–1630 (2013)

    Article  MathSciNet  Google Scholar 

  21. Daubechies, I., DeVore, R., Fornasier, M., Güntürk, C.S.: Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure Appl. Math. 63, 1–38 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20, 2378–2386 (2011)

    Article  MathSciNet  Google Scholar 

  23. Kheradmand, A., Milanfar, P.: A general framework for regularized, similarity-based image restoration. IEEE Trans. Image Process. 23, 5136–5151 (2014)

    Article  MathSciNet  Google Scholar 

  24. Portilla, J.: Image restoration through L0 analysis-based sparse optimization in tight frames. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 3909–3912. IEEE (2009)

    Google Scholar 

  25. Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18, 2419–2434 (2009)

    Article  MathSciNet  Google Scholar 

  26. Beveridge, J.R., Phillips, J., Bolme, D.S., Draper, B., Givens, G.H., Lui, Y.M., Teli, M.N., Zhang, H., Scruggs, W.T., Bowyer, K.W., et al.: The challenge of face recognition from digital point-and-shoot cameras. In: 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–8. IEEE (2013)

    Google Scholar 

  27. Danielyan, A., Katkovnik, V., Egiazarian, K.: BM3D frames and variational image deblurring. IEEE Trans. Image Process. 21, 1715–1728 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The work presented in this paper was supported by the National Natural Science Foundation of China (Grants No. NSFC-61402046), Fund for Beijing University of Posts and Telecommunications (No.2013XZ10, 2013XD-04), Fund for the Doctoral Program of Higher Education of China (Grants No.20120005110002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Ming .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tian, L., Fan, C., Ming, Y., Hong, X. (2017). Weighted Non-locally Self-similarity Sparse Representation for Face Deblurring. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10116. Springer, Cham. https://doi.org/10.1007/978-3-319-54407-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54407-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54406-9

  • Online ISBN: 978-3-319-54407-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics