Skip to main content

An Overview of Granular Computing Using Fuzzy Logic Systems

  • Chapter
  • First Online:
Nature-Inspired Design of Hybrid Intelligent Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 667))

Abstract

As Granular Computing has gained interest, more research has lead into using different representations for Information Granules, i.e., rough sets, intervals, quotient space, fuzzy sets; where each representation offers different approaches to information granulation. These different representations have given more flexibility to what information granulation can achieve. In this overview paper, the focus is only on journal papers where Granular Computing is studied when fuzzy logic systems are used, covering research done with Type-1 Fuzzy Logic Systems, Interval Type-2 Fuzzy Logic Systems, as well as the usage of general concepts of Fuzzy Systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pedrycz, W.: Granular Computing - The Emerging Paradigm. J. Uncertain Syst. 1, 38–61 (2007).

    Google Scholar 

  2. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982).

    Google Scholar 

  3. Zadeh, L.A.: Fuzzy Sets. Inf. Control. 8, 338–353 (1965).

    Google Scholar 

  4. Dubois, D., Prade, H.: Rough sets and fuzzy rough sets*. Int. J. Gen. Syst. 17, 191–209 (1990).

    Google Scholar 

  5. Zhang, L.Z.L., Zhang, B.Z.B.: Quotient space based multi-granular computing. 2005 IEEE International Conference on Granular Computing. p. 98 (2005).

    Google Scholar 

  6. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986).

    Google Scholar 

  7. Smarandache, F.: Neutrosophic set - a generalization of the intuitionistic fuzzy set. 2006 IEEE International Conference on Granular Computing. pp. 38–42. IEEE (2006).

    Google Scholar 

  8. Smita Sushil Sikchi, S.S.M.S.A.: Design of fuzzy expert system for diagnosis of cardiac diseases. Int. J. Med. Sci. Public Heal. 2, 56–61 (2013).

    Google Scholar 

  9. Neshat, M., Adeli, A.: Designing a fuzzy expert system to predict the concrete mix design. 2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings. pp. 1–6. IEEE (2011).

    Google Scholar 

  10. Goztepe, K.: Designing Fuzzy Rule Based Expert System for Cyber Security, http://www.ijiss.org/ijiss/index.php/ijiss/article/view/3, (2012).

  11. Jelleli, T.M., Alimi, A.M.: Automatic design of a least complicated hierarchical fuzzy system. International Conference on Fuzzy Systems. pp. 1–7. IEEE (2010).

    Google Scholar 

  12. Joonmin Gil, Chong-Sun Hwang: An automatic design of fuzzy systems based on L-systems. FUZZ-IEEE’99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315). pp. 418–423 vol.1. IEEE (1999).

    Google Scholar 

  13. Heider, H., Drabe, T.: A cascaded genetic algorithm for improving fuzzy-system design. Int. J. Approx. Reason. 17, 351–368 (1997).

    Google Scholar 

  14. Pedrycz, W., Al-Hmouz, R., Balamash, A.S., Morfeq, A.: Designing granular fuzzy models: A hierarchical approach to fuzzy modeling. Knowledge-Based Syst. 76, 42–52 (2015).

    Google Scholar 

  15. Pedrycz, W., Homenda, W.: Building the fundamentals of granular computing: A principle of justifiable granularity. Appl. Soft Comput. 13, 4209–4218 (2013).

    Google Scholar 

  16. Pedrycz, W.: Relational and directional aspects in the construction of information granules. IEEE Trans. Syst. Man, Cybern. - Part A Syst. Humans. 32, 605–614 (2002).

    Google Scholar 

  17. Pedrycz, W., Izakian, H.: Cluster-Centric Fuzzy Modeling. IEEE Trans. Fuzzy Syst. 22, 1585–1597 (2014).

    Google Scholar 

  18. Pedrycz, W., Loia, V., Senatore, S.: Fuzzy Clustering with Viewpoints. IEEE Trans. Fuzzy Syst. 18, 274–284 (2010).

    Google Scholar 

  19. Bargiela, A., Pedrycz, W.: Granular Mappings. IEEE Trans. Syst. Man, Cybern. - Part A Syst. Humans. 35, 292–297 (2005).

    Google Scholar 

  20. Balamash, A., Pedrycz, W., Al-Hmouz, R., Morfeq, A.: An expansion of fuzzy information granules through successive refinements of their information content and their use to system modeling. Expert Syst. Appl. 42, 2985–2997 (2015).

    Google Scholar 

  21. Wang, W., Pedrycz, W., Liu, X.: Time series long-term forecasting model based on information granules and fuzzy clustering. Eng. Appl. Artif. Intell. 41, 17–24 (2015).

    Google Scholar 

  22. Lu, W., Pedrycz, W., Liu, X., Yang, J., Li, P.: The modeling of time series based on fuzzy information granules. Expert Syst. Appl. 41, 3799–3808 (2014).

    Google Scholar 

  23. Pedrycz, W., Song, M.: Granular fuzzy models: a study in knowledge management in fuzzy modeling. Int. J. Approx. Reason. 53, 1061–1079 (2012).

    Google Scholar 

  24. Pedrycz, W., Succi, G., Sillitti, A., Iljazi, J.: Data description: A general framework of information granules. Knowledge-Based Syst. 80, 98–108 (2015).

    Google Scholar 

  25. Solis, A.R., Panoutsos, G.: Granular computing neural-fuzzy modelling: A neutrosophic approach. Appl. Soft Comput. 13, 4010–4021 (2013).

    Google Scholar 

  26. Yu, F., Pedrycz, W.: The design of fuzzy information granules: Tradeoffs between specificity and experimental evidence. Appl. Soft Comput. 9, 264–273 (2009).

    Google Scholar 

  27. Pedrycz, A., Hirota, K., Pedrycz, W., Dong, F.: Granular representation and granular computing with fuzzy sets. Fuzzy Sets Syst. 203, 17–32 (2012).

    Google Scholar 

  28. Panoutsos, G., Mahfouf, M.: A neural-fuzzy modelling framework based on granular computing: Concepts and applications. Fuzzy Sets Syst. 161, 2808–2830 (2010).

    Google Scholar 

  29. Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90, 111–127 (1997).

    Google Scholar 

  30. Pedrycz, W., Vukovich, G.: Feature analysis through information granulation and fuzzy sets. Pattern Recognit. 35, 825–834 (2002).

    Google Scholar 

  31. Kang, X., Li, D., Wang, S., Qu, K.: Formal concept analysis based on fuzzy granularity base for different granulations. Fuzzy Sets Syst. 203, 33–48 (2012).

    Google Scholar 

  32. Park, K.-J., Pedrycz, W., Oh, S.-K.: A genetic approach to modeling fuzzy systems based on information granulation and successive generation-based evolution method. Simul. Model. Pract. Theory. 15, 1128–1145 (2007).

    Google Scholar 

  33. Choi, J.-N., Oh, S.-K., Pedrycz, W.: Structural and parametric design of fuzzy inference systems using hierarchical fair competition-based parallel genetic algorithms and information granulation. Int. J. Approx. Reason. 49, 631–648 (2008).

    Google Scholar 

  34. Novák, V.: Intensional theory of granular computing. Soft Comput. - A Fusion Found. Methodol. Appl. 8, 281–290 (2004).

    Google Scholar 

  35. Bargiela, A., Pedrycz, W.: A model of granular data: a design problem with the Tchebyschev FCM. Soft Comput. 9, 155–163 (2003).

    Google Scholar 

  36. Pedrycz, W., Al-Hmouz, R., Morfeq, A., Balamash, A.: The design of free structure granular mappings: the use of the principle of justifiable granularity. IEEE Trans. Cybern. 43, 2105–13 (2013).

    Google Scholar 

  37. Pedrycz, W., Bargiela, A.: An optimization of allocation of information granularity in the interpretation of data structures: toward granular fuzzy clustering. IEEE Trans. Syst. Man. Cybern. B. Cybern. 42, 582–90 (2012).

    Google Scholar 

  38. Pedrycz, W.: Allocation of information granularity in optimization and decision-making models: Towards building the foundations of Granular Computing. Eur. J. Oper. Res. 232, 137–145 (2014).

    Google Scholar 

  39. Fazzolari, M., Alcalá, R., Herrera, F.: A multi-objective evolutionary method for learning granularities based on fuzzy discretization to improve the accuracy-complexity trade-off of fuzzy rule-based classification systems: D-MOFARC algorithm. Appl. Soft Comput. 24, 470–481 (2014).

    Google Scholar 

  40. Roh, S.-B., Pedrycz, W., Ahn, T.-C.: A design of granular fuzzy classifier. Expert Syst. Appl. 41, 6786–6795 (2014).

    Google Scholar 

  41. Lu, W., Chen, X., Pedrycz, W., Liu, X., Yang, J.: Using interval information granules to improve forecasting in fuzzy time series. Int. J. Approx. Reason. 57, 1–18 (2015).

    Google Scholar 

  42. Dick, S., Schenker, A., Pedrycz, W., Kandel, A.: Regranulation: A granular algorithm enabling communication between granular worlds. Inf. Sci. (Ny). 177, 408–435 (2007).

    Google Scholar 

  43. Lu, W., Yang, J., Liu, X., Pedrycz, W.: The modeling and prediction of time series based on synergy of high-order fuzzy cognitive map and fuzzy c-means clustering. Knowledge-Based Syst. 70, 242–255 (2014).

    Google Scholar 

  44. Sanchez, M.A., Castillo, O., Castro, J.R., Melin, P.: Fuzzy granular gravitational clustering algorithm for multivariate data. Inf. Sci. (Ny). 279, 498–511 (2014).

    Google Scholar 

  45. Pedrycz, W., Rai, P.: Collaborative clustering with the use of Fuzzy C-Means and its quantification. Fuzzy Sets Syst. 159, 2399–2427 (2008).

    Google Scholar 

  46. Dong, R., Pedrycz, W.: A granular time series approach to long-term forecasting and trend forecasting. Phys. A Stat. Mech. its Appl. 387, 3253–3270 (2008).

    Google Scholar 

  47. Oh, S.-K., Pedrycz, W., Park, K.-J.: Structural developments of fuzzy systems with the aid of information granulation. Simul. Model. Pract. Theory. 15, 1292–1309 (2007).

    Google Scholar 

  48. Pedrycz, W., Gacek, A.: Temporal granulation and its application to signal analysis. Inf. Sci. (Ny). 143, 47–71 (2002).

    Google Scholar 

  49. Pedrycz, W.: A dynamic data granulation through adjustable fuzzy clustering. Pattern Recognit. Lett. 29, 2059–2066 (2008).

    Google Scholar 

  50. Dai Pra, A.L., Passoni, L.I., Rabal, H.: Evaluation of laser dynamic speckle signals applying granular computing. Signal Processing. 89, 266–274 (2009).

    Google Scholar 

  51. Pedrycz, W., Chen, S.C., Rubin, S.H., Lee, G.: Risk evaluation through decision-support architectures in threat assessment and countering terrorism. Appl. Soft Comput. 11, 621–631 (2011).

    Google Scholar 

  52. Ulu, C., Güzelkaya, M., Eksin, I.: Granular type-2 membership functions: A new approach to formation of footprint of uncertainty in type-2 fuzzy sets. Appl. Soft Comput. 13, 3713–3728 (2013).

    Google Scholar 

  53. Sanchez, M.A., Castillo, O., Castro, J.R.: Information granule formation via the concept of uncertainty-based information with Interval Type-2 Fuzzy Sets representation and Takagi–Sugeno–Kang consequents optimized with Cuckoo search. Appl. Soft Comput. 27, 602–609 (2015).

    Google Scholar 

  54. Pedrycz, W., Al-Hmouz, R., Morfeq, A., Balamash, A.S.: Building granular fuzzy decision support systems. Knowledge-Based Syst. 58, 3–10 (2014).

    Google Scholar 

  55. Pedrycz, W.: Human centricity in computing with fuzzy sets: an interpretability quest for higher order granular constructs. J. Ambient Intell. Humaniz. Comput. 1, 65–74 (2009).

    Google Scholar 

  56. Rubio-Solis, A., Panoutsos, G.: Interval Type-2 Radial Basis Function Neural Network: A Modeling Framework. IEEE Trans. Fuzzy Syst. 23, 457–473 (2015).

    Google Scholar 

  57. Nandedkar, A. V, Biswas, P.K.: A granular reflex fuzzy min-max neural network for classification. IEEE Trans. Neural Netw. 20, 1117–34 (2009).

    Google Scholar 

  58. Qian, Y., Liang, J., Wu, W.Z., Dang, C.: Information Granularity in Fuzzy Binary GrC Model. IEEE Trans. Fuzzy Syst. 19, 253–264 (2011).

    Google Scholar 

  59. Kundu, S., Pal, S.K.: FGSN: Fuzzy Granular Social Networks – Model and applications. Inf. Sci. (Ny). 314, 100–117 (2015).

    Google Scholar 

  60. Dick, S., Tappenden, A., Badke, C., Olarewaju, O.: A granular neural network: Performance analysis and application to re-granulation. Int. J. Approx. Reason. 54, 1149–1167 (2013).

    Google Scholar 

  61. Mencar, C., Fanelli, A.M.: Interpretability constraints for fuzzy information granulation. Inf. Sci. (Ny). 178, 4585–4618 (2008).

    Google Scholar 

  62. Pedrycz, W., Vukovich, G.: Granular neural networks. Neurocomputing. 36, 205–224 (2001).

    Google Scholar 

  63. Leite, D., Costa, P., Gomide, F.: Evolving granular neural networks from fuzzy data streams. Neural Netw. 38, 1–16 (2013).

    Google Scholar 

  64. Pal, S.K., Meher, S.K., Dutta, S.: Class-dependent rough-fuzzy granular space, dispersion index and classification. Pattern Recognit. 45, 2690–2707 (2012).

    Google Scholar 

  65. Liu, H., Xiong, S., Fang, Z.: FL-GrCCA: A granular computing classification algorithm based on fuzzy lattices. Comput. Math. with Appl. 61, 138–147 (2011).

    Google Scholar 

  66. Pedrycz, W.: From fuzzy data analysis and fuzzy regression to granular fuzzy data analysis. Fuzzy Sets Syst. (2014).

    Google Scholar 

  67. Ganivada, A., Dutta, S., Pal, S.K.: Fuzzy rough granular neural networks, fuzzy granules, and classification. Theor. Comput. Sci. 412, 5834–5853 (2011).

    Google Scholar 

  68. Kaburlasos, V.G., Papadakis, S.E.: A granular extension of the fuzzy-ARTMAP (FAM) neural classifier based on fuzzy lattice reasoning (FLR). Neurocomputing. 72, 2067–2078 (2009).

    Google Scholar 

  69. Oh, S.-K., Kim, W.-D., Park, B.-J., Pedrycz, W.: A design of granular-oriented self-organizing hybrid fuzzy polynomial neural networks. Neurocomputing. 119, 292–307 (2013).

    Google Scholar 

  70. Bodjanova, S.: Granulation of a fuzzy set: Nonspecificity. Inf. Sci. (Ny). 177, 4430–4444 (2007).

    Google Scholar 

  71. Kundu, S., Pal, S.K.: Fuzzy-Rough Community in Social Networks. Pattern Recognit. Lett. (2015).

    Google Scholar 

  72. Pedrycz, W., Park, H.S., Oh, S.K.: A granular-oriented development of functional radial basis function neural networks. Neurocomputing. 72, 420–435 (2008).

    Google Scholar 

  73. Pal, S.K.: Soft data mining, computational theory of perceptions, and rough-fuzzy approach. Inf. Sci. (Ny). 163, 5–12 (2004).

    Google Scholar 

  74. Pedrycz, W., Syed Ahmad, S.S.: Evolutionary feature selection via structure retention. Expert Syst. Appl. 39, 11801–11807 (2012).

    Google Scholar 

  75. LI, H., DICK, S.: A similarity measure for fuzzy rulebases based on linguistic gradients. Inf. Sci. (Ny). 176, 2960–2987 (2006).

    Google Scholar 

  76. Ghaffari, H.O., Sharifzadeh, M., Shahriar, K., Pedrycz, W.: Application of soft granulation theory to permeability analysis. Int. J. Rock Mech. Min. Sci. 46, 577–589 (2009).

    Google Scholar 

  77. Gacek, A.: Signal processing and time series description: A Perspective of Computational Intelligence and Granular Computing. Appl. Soft Comput. 27, 590–601 (2015).

    Google Scholar 

  78. Pedrycz, W.: Information granules and their use in schemes of knowledge management. Sci. Iran. 18, 602–610 (2011).

    Google Scholar 

  79. Pedrycz, W., Hirota, K.: Forming consensus in the networks of knowledge. Eng. Appl. Artif. Intell. 20, 657–666 (2007).

    Google Scholar 

  80. Degang, C., Yongping, Y., Hui, W.: Granular computing based on fuzzy similarity relations. Soft Comput. 15, 1161–1172 (2010).

    Google Scholar 

Download references

Acknowledgments

We thank the MyDCI program of the Division of Graduate Studies and Research, UABC, and Tijuana Institute of Technology the financial support provided by our sponsor CONACYT contract grant number: 314258.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio A. Sanchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sanchez, M.A., Castillo, O., Castro, J.R. (2017). An Overview of Granular Computing Using Fuzzy Logic Systems. In: Melin, P., Castillo, O., Kacprzyk, J. (eds) Nature-Inspired Design of Hybrid Intelligent Systems. Studies in Computational Intelligence, vol 667. Springer, Cham. https://doi.org/10.1007/978-3-319-47054-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47054-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47053-5

  • Online ISBN: 978-3-319-47054-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics