Skip to main content

Dynamic Logic with Binders and Its Application to the Development of Reactive Systems

  • Conference paper
  • First Online:
Theoretical Aspects of Computing – ICTAC 2016 (ICTAC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9965))

Included in the following conference series:

Abstract

This paper introduces a logic to support the specification and development of reactive systems on various levels of abstraction, from property specifications, concerning e.g. safety and liveness requirements, to constructive specifications representing concrete processes. This is achieved by combining binders of hybrid logic with regular modalities of dynamic logics in the same formalism, which we call \(\mathcal {D}^{\downarrow }\)-logic. The semantics of our logic focuses on effective processes and is therefore given in terms of reachable transition systems with initial states. The second part of the paper resorts to this logic to frame stepwise development of reactive systems within the software development methodology proposed by Sannella and Tarlecki. In particular, we instantiate the generic concepts of constructor and abstractor implementations by using standard operators on reactive components, like relabelling and parallel composition, as constructors, and bisimulation for abstraction. We also study vertical composition of implementations which relies on the preservation of bisimularity by the constructions on labeleld transition systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See translator.nrc.pt.

References

  1. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling, Specification and Verification. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  2. Areces, C., Blackburn, P., Marx, M.: A road-map on complexity for hybrid logics. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 307–321. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Astesiano, E., Bidoit, M., Kirchner, H., Krieg-Brückner, B., Mosses, P.D., Sannella, D., Tarlecki, A.: CASL: the common algebraic specification language. Theor. Comput. Sci. 286(2), 153–196 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories of Communicating Processes. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  5. Bidoit, M., Hennicker, R.: Constructor-based observational logic. J. Log. Algebr. Program. 67(1–2), 3–51 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Braüner, T.: Hybrid Logic and Its Proof-Theory. Applied Logic Series, vol. 37. Springer, Netherlands (2010)

    MATH  Google Scholar 

  7. Cengarle, M.V.: The temporal logic institution. Technical report 9805, LUM München, Institut für Informatik (1998)

    Google Scholar 

  8. Diaconescu, R.: Institutional semantics for many-valued logics. Fuzzy Sets Syst. 218, 32–52 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fiadeiro, J.L., Maibaum, T.S.E.: Temporal theories as modularisation units for concurrent system specification. Formal Asp. Comput. 4(3), 239–272 (1992)

    Article  MATH  Google Scholar 

  10. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. ACM 39(1), 95–146 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goranko, V.: Temporal logic with reference pointers. In: Gabbay, D.M., Ohlbach, H.J. (eds.) ICTL 1994. LNCS, vol. 827, pp. 133–148. Springer, Heidelberg (1994). doi:10.1007/BFb0013985

    Chapter  Google Scholar 

  12. Gorrieri, R., Rensink, A., Zamboni, M.A.: Action refinement. In: Handbook of Proacess Algebra, pp. 1047–1147. Elsevier (2000)

    Google Scholar 

  13. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems. MIT Press, Cambridge (2014)

    MATH  Google Scholar 

  14. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  15. Havelund, K.: The Fork Calculus -Towards a Logic for Concurrent ML. Ph.D. thesis, DIKU, University of Copenhagen, Denmark (1994)

    Google Scholar 

  16. Hoare, C.A.R.: Proof of correctness of data representations. Acta Inf. 1, 271–281 (1972)

    Article  MATH  Google Scholar 

  17. Hoare, C.A.R.: Communicating Sequential Processes. Series in Computer Science. Prentice-Hall International, Upper Saddle River (1985)

    MATH  Google Scholar 

  18. Jones, C.B.: Software Development - A Rigorous Approach. Series in Computer Science. Prentice Hall, Upper Saddle River (1980)

    MATH  Google Scholar 

  19. Knijnenburg, P., van Leeuwen, J.: On models for propositional dynamic logic. Theor. Comput. Sci. 91(2), 181–203 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Larsen, K.G., Thomsen, B.: A modal process logic. In: Third Annual Symposium on Logic in Computer Science, pp. 203–210. IEEE Computer Society (1988)

    Google Scholar 

  21. Madeira, A., Barbosa, L., Hennicker, R., Martins, M.: Dynamic logic with binders and its applications to the developmet of reactive systems (extended with proofs). Technical report (2016). http://alfa.di.uminho.pt/~madeira/main_files/extreport.pdf

  22. Magee, J., Kramer, J.: Concurrency - State Models and Java Programs, 2nd edn. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  23. O’Reilly, L., Mossakowski, T., Roggenbach, M.: Compositional modelling and reasoning in an institution for processes and data. In: Mossakowski, T., Kreowski, H.-J. (eds.) WADT 2010. LNCS, vol. 7137, pp. 251–269. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). doi:10.1007/BFb0017309

    Chapter  Google Scholar 

  25. Reggio, G., Astesiano, E., Choppy, C.: Casl-ltl: a casl extension for dynamic reactive systems version 1.0. - summary. Technical report disi-tr-03-36. Technical report, DFKI Lab Bremen (2013)

    Google Scholar 

  26. Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1985)

    Book  MATH  Google Scholar 

  27. Roggenbach, M.: CSP-CASL - a new integration of process algebra and algebraic specification. Theor. Comput. Sci. 354(1), 42–71 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sannella, D., Tarlecki, A.: Toward formal development of programs from algebraic specifications: implementations revisited. Acta Inform. 25(3), 233–281 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software Development. Monographs on TCS, an EATCS Series. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  30. Sekerinski, E., Sere, K.: Program Development by Refinement: Case Studies Using the B Method. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  31. Winskel, G., Nielsen, M.: Models for concurrency. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 4, pp. 1–148. Oxford University Press, Oxford (1995)

    Google Scholar 

Download references

Acknowledgments

This work is financed by the ERDF European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência Tecnologia within project POCI-01-0145-FEDER-016692 and UID/MAT/04106/2013 at CIDMA. A. Madeira and L. S. Barbosa are further supported by FCT individual grants SFRH/BPD/103004/2014 and SFRH/BSAB/113890/2015, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Madeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Madeira, A., Barbosa, L.S., Hennicker, R., Martins, M.A. (2016). Dynamic Logic with Binders and Its Application to the Development of Reactive Systems. In: Sampaio, A., Wang, F. (eds) Theoretical Aspects of Computing – ICTAC 2016. ICTAC 2016. Lecture Notes in Computer Science(), vol 9965. Springer, Cham. https://doi.org/10.1007/978-3-319-46750-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46750-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46749-8

  • Online ISBN: 978-3-319-46750-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics