Skip to main content

A Novel SDP Relaxation for the Quadratic Assignment Problem Using Cut Pseudo Bases

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9849))

Abstract

The quadratic assignment problem (QAP) is one of the hardest combinatorial optimization problems. Its range of applications is wide, including facility location, keyboard layout, and various other domains. The key success factor of specialized branch-and-bound frameworks for minimizing QAPs is an efficient implementation of a strong lower bound. In this paper, we propose a lower-bound-preserving transformation of a QAP to a different quadratic problem that allows for small and efficiently solvable SDP relaxations. This transformation is self-tightening in a branch-and-bound process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The Frobenius product \(A \bullet B := tr( A^T B) = \sum _{i,j} a_{ij} b_{ij}\) is the standard inner product on the space of \(n \times n\) matrices used in semi-definite programming.

References

  1. Birkhoff, D.: Tres observaciones sobre el algebra lineal. Univ. Nac. Tucuman Rev. Ser. A 5, 147–151 (1946)

    MathSciNet  Google Scholar 

  2. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. Logistics Q. 2, 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  3. Duan, R., Su, H.H.: A scaling algorithm for maximum weight matching in bipartite graphs. In: Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 1413–1424. SIAM (2012)

    Google Scholar 

  4. Koopmans, T., Beckmann, M.J.: Assignment problems and the location of economic activities. Cowles Foundation Discussion Papers 4, Cowles Foundation for Research in Economics, Yale University (1955)

    Google Scholar 

  5. Nugent, C., Vollman, T., Ruml, J.: An experimental comparison of techniques for the assignment of facilities to locations. Oper. Res. 16, 150–173 (1968)

    Article  Google Scholar 

  6. Burkard, R., Offermann, J.: Entwurf von Schreibmaschinentastaturen mittels quadratischer Zuordnungsprobleme. Z. Oper. Res. 21, 121–132 (1977)

    MATH  Google Scholar 

  7. Burkard, R.E., Çela, E., Pardalos, P.M., Pitsoulis, L.S.: The Quadratic Assignment Problem. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  8. Steinberg, L.: The backboard wiring problem: a placement algorithm. SIAM Rev. 3, 37–50 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  9. Krarup, J., Pruzan, P.M.: Computer-aided layout design. In: Balinski, M.L., Lemarechal, C. (eds.) Mathematical Programming in Use. Mathematical Programming Studies, vol. 9, pp. 75–94. Springer, Heidelberg (1978)

    Chapter  Google Scholar 

  10. Elshafei, A.N.: Hospital layout as a quadratic assignment problem. Oper. Res. Q. (1970–1977) 28, 167–179 (1977)

    Article  MATH  Google Scholar 

  11. Burkard, R.E., Karisch, S.E., Rendl, F.: Qaplib - a quadratic assignment problemlibrary. J. Glob. Optim. 10, 391–403 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Anstreicher, K., Brixius, N., Goux, J.P., Linderoth, J.: Solving large quadratic assignment problems on computational grids. Math. Program. 91, 563–588 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Queyranne, M.: Performance ratio of polynomial heuristics for triangle inequality quadratic assignment problems. Oper. Res. Lett. 4, 231–234 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pardalos, P.M., Rendl, F., Wolkowicz, H.: The quadratic assignment problem: a survey and recent developments. In: Proceedings of the DIMACS Workshop on Quadratic Assignment Problems. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 16, pp. 1–42. American Mathematical Society (1994)

    Google Scholar 

  15. Commander, C.W.: A survey of the quadratic assignment problem, with applications. Morehead Electron. J. Appl. Math. 4, 1–15 (2005). MATH-2005-01

    Google Scholar 

  16. Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A survey for the quadratic assignment problem. Eur. J. Oper. Res. 176, 657–690 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gilmore, P.C.: Optimal and suboptimal algorithms for the quadratic assignment problem. SIAM J. Appl. Math. 10, 305–313 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lawler, E.L.: The quadratic assignment problem. Manage. Sci. 9, 586–599 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, Y., Pardalos, P.M., Ramakrishnan, K.G., Resende, M.G.C.: Lower bounds for the quadratic assignment problem. Ann. Oper. Res. 50, 387–410 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Frieze, A., Yadegar, J.: On the quadratic assignment problem. Discrete Appl. Math. 5, 89–98 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kaufman, L., Broeckx, F.: An algorithm for the quadratic assignment problem using Benders’ decomposition. Eur. J. Oper. Res. 2, 204–211 (1978)

    Article  MATH  Google Scholar 

  22. Zhao, Q., Karisch, S.E., Rendl, F., Wolkowicz, H.: Semidefinite programming relaxations for the quadratic assignment problem. J. Comb. Optim. 2, 71–109 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Povh, J., Rendl, F.: Copositive and semidefinite relaxations of the quadratic assignment problem. Discret. Optim. 6, 231–241 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Peng, J., Mittelmann, H., Li, X.: A new relaxation framework for quadratic assignment problems based on matrix splitting. Math. Program. Comput. 2, 59–77 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wolsey, L.A.: Integer Programming. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1998). A Wiley-Interscience Publication

    MATH  Google Scholar 

  26. ApS, M.: The MOSEK C optimizer API manual Version 7.1 (Revision 52) (2016)

    Google Scholar 

  27. Gurobi Optimization, I.: Gurobi optimizer reference manual (2016)

    Google Scholar 

  28. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Math. Program. 121, 307–335 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian John .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

John, M., Karrenbauer, A. (2016). A Novel SDP Relaxation for the Quadratic Assignment Problem Using Cut Pseudo Bases. In: Cerulli, R., Fujishige, S., Mahjoub, A. (eds) Combinatorial Optimization. ISCO 2016. Lecture Notes in Computer Science(), vol 9849. Springer, Cham. https://doi.org/10.1007/978-3-319-45587-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45587-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45586-0

  • Online ISBN: 978-3-319-45587-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics