Skip to main content

An Accelerated Multistart Derivative-Free Framework for the Beam Angle Optimization Problem in IMRT

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2016 (ICCSA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9786))

Included in the following conference series:

  • 1198 Accesses

Abstract

Radiation therapy, either alone or combined with surgery or chemotherapy, is one of the main treatment modalities for cancer. Intensity-modulated radiation therapy (IMRT) is an advanced form of radiation therapy, where the patient is irradiated using non-uniform radiation fields from selected beam angle directions. The goal of IMRT is to eradicate all cancer cells by delivering a radiation dose to the tumor volume, while attempting to spare, simultaneously, the surrounding organs and tissues. Although the use of non-uniform radiation fields can favor organ sparing, the selection of appropriate irradiation beam angle directions – beam angle optimization – is the best way to enhance organ sparing. The beam angle optimization (BAO) problem is an extremely challenging continuous non-convex multi-modal optimization problem. In this study, we present a novel approach for the resolution of the BAO problem, using a multistart derivative-free framework for a more thoroughly exploration of the search space of the highly non-convex BAO problem. As the objective function that drives the BAO problem is expensive in terms of computational time, and a multistart approach typically implies a large number of function evaluations, an accelerated framework is explored. A clinical case of an intra-cranial tumor treated at the Portuguese Institute of Oncology of Coimbra is used to discuss the benefits of the accelerated multistart approach proposed for the BAO problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aleman, D.M., Kumar, A., Ahuja, R.K., Romeijn, H.E., Dempsey, J.F.: Neighborhood search approaches to beam orientation optimization in intensity modulated radiation therapy treatment planning. J. Global Optim. 42, 587–607 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aleman, D.M., Romeijn, H.E., Dempsey, J.F.: A response surface approach to beam orientation optimization in intensity modulated radiation therapy treatment planning. INFORMS J. Comput. Computat. Biol. Med. Appl. 21, 62–76 (2009)

    Google Scholar 

  3. Bangert, M., Ziegenhein, P., Oelfke, U.: Characterizing the combinatorial beam angle selection problem. Phys. Med. Biol. 57, 6707–6723 (2012)

    Article  Google Scholar 

  4. Bangert, M., Ziegenhein, P., Oelfke, U.: Comparison of beam angle selection strategies for intracranial imrt. Med. Phys. 40, 011716 (2013)

    Article  Google Scholar 

  5. Bertsimas, D., Cacchiani, V., Craft, D., Nohadani, O.: A hybrid approach to beam angle optimization in intensity-modulated radiation therapy. Comput. Oper. Res. 40, 2187–2197 (2013)

    Article  MathSciNet  Google Scholar 

  6. Breedveld, S., Storchi, P., Keijzer, M., Heemink, A.W., Heijmen, B.: A novel approach to multi-criteria inverse planning for IMRT. Phys. Med. Biol. 52, 6339–6353 (2007)

    Article  Google Scholar 

  7. Breedveld, S., Storchi, P., Heijmen, B.: The equivalence of multicriteria methods for radiotherapy plan optimization. Phys. Med. Biol. 54, 7199–7209 (2009)

    Article  Google Scholar 

  8. Breedveld, S., Storchi, P., Voet, P., Heijmen, B.: iCycle: integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans. Med. Phys. 39, 951–963 (2012)

    Article  Google Scholar 

  9. Brimberg, J., Hansen, P., Mladenovic, N.: Convergence of variable neighborhood search. Les Chaiers du Gerard (2004)

    Google Scholar 

  10. Mart, R., Resende, M.G.C., Ribeiro, C.C.: Multistart methods for combinatorial optimization. Eur. J. Oper. Res. 226, 1–8 (2013)

    Article  Google Scholar 

  11. Craft, D., Halabi, T., Shih, H., Bortfeld, T.: Approximating convex Pareto surfaces in multiobjective radiotherapy planning. Med. Phys. 33, 3399–3407 (2006)

    Article  Google Scholar 

  12. Craft, D.: Local beam angle optimization with linear programming and gradient search. Phys. Med. Biol. 52, 127–135 (2007)

    Article  Google Scholar 

  13. Dias, J., Rocha, H., Ferreira, B.C., Lopes, M.C.: A genetic algorithm with neural network fitness function evaluation for IMRT beam angle optimization. Cent. Eur. J. Oper. Res. 22, 431–455 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dias, J., Rocha, H., Ferreira, B.C., Lopes, M.C.: Simulated annealing applied to IMRT beam angle optimization: A computational study. Physica Medica 31, 747–756 (2015)

    Article  Google Scholar 

  15. Li, Y., Yao, D., Yao, J., Chen, W.: A particle swarm optimization algorithm for beam angle selection in intensity modulated radiotherapy planning. Phys. Med. Biol. 50, 3491–3514 (2005)

    Article  Google Scholar 

  16. Lim, G.J., Cao, W.: A two-phase method for selecting IMRT treatment beam angles: Branch-and-Prune and local neighborhood search. Eur. J. Oper. Res. 217, 609–618 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Monz, M., Kufer, K.H., Bortfeld, T.R., Thieke, C.: Pareto navigation Algorithmic foundation of interactive multi-criteria IMRT planning. Phys. Med. Biol. 53, 985–998 (2008)

    Article  Google Scholar 

  18. Rocha, H., Dias, J., Ferreira, B.C., Lopes, M.C.: Selection of intensity modulated radiation therapy treatment beam directions using radial basis functions within a pattern search methods framework. J. Glob. Optim. 57, 1065–1089 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rocha, H., Dias, J., Ferreira, B.C., Lopes, M.C.: Beam angle optimization for intensity-modulated radiation therapy using a guided pattern search method. Phys. Med. Biol. 58, 2939–2953 (2013)

    Article  Google Scholar 

  20. Rocha, H., Dias, J., Ferreira, B.C., Lopes, M.C.: Pattern search methods framework for beam angle optimization in radiotherapy design. Appl. Math. Comput. 219, 10853–10865 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Torczon, V.: On the convergence of pattern search algorithms. SIAM J. Optim. 7, 1–25 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Fundação para a Ciência e a Tecnologia (FCT) under project grant UID/MULTI/00308/2013. We would like to show gratitude to Ben Heijmen and Sebastiaan Breedveld for giving us permission to install Yartos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto Rocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Rocha, H., Dias, J.M., Ventura, T., Ferreira, B.C., do Carmo Lopes, M. (2016). An Accelerated Multistart Derivative-Free Framework for the Beam Angle Optimization Problem in IMRT. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9786. Springer, Cham. https://doi.org/10.1007/978-3-319-42085-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42085-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42084-4

  • Online ISBN: 978-3-319-42085-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics