Skip to main content

Sensitivity Analysis of Major Equipment Based on Radial Basis Function Metamodel

  • Conference paper
Intelligent Robotics and Applications

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9246))

  • 3532 Accesses

Abstract

A major equipment is generally an extraordinarily large and complex machine containing lots of parameters, understanding and assessment the performance of a major equipment is a great challenge as each of these parameters has uncertainty. In this work, a metamodel-based global sensitivity analysis (MBGSA) method is proposed for understanding the influence of the parameters on the different outputs. The MBGSA consists of global sensitivity analysis (GSA) method to identify the impact of each parameters on each of the outputs, moderate-fidelity computational models to mimic the physical model, and metamodeling technique that constructs the mapping between input and output with a limited sampling data. An example on applying the MBGSA in the dynamics analysis of a tunnel boring machine’s driving system is presented, where hierarchical dynamics model, radial basis function (RBF) metamodel and Sobol’s GSA are bonded together to achieve the aim. The results indicate that the proposed MBGSA is available and efficient for the analysis of TBM and thus can be of great help for other large and complex major equipments at the early stage of design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delisio, A., Zhao, J., Einstein, H.H.: Analysis and prediction of TBM performance in blocky rock conditions at the Lötschberg Base Tunnel. Tunn. Undergr. Sp. Tech. 33, 131–142 (2013)

    Article  Google Scholar 

  2. Zhang, K.Z., Yu, H.D., Liu, Z.P., et al.: Dynamic characteristic analysis of TBM tunneling in mixed-face conditions. Simul. Model. Pract. Th. 18(7), 1019–1031 (2010)

    Article  Google Scholar 

  3. Wei, J., Sun, Q.C., Sun, W., et al.: Load-sharing characteristic of multiple pinions driving in tunneling boring machine. Chin. J. Mech. Eng-En. 26(3), 532–540 (2013)

    Article  Google Scholar 

  4. Sun, W., Ding, X., Wei, J., et al.: An analyzing method of coupled modes in multi-stage planetary gear system. Int. J. Precis. Eng. Man. 15(11), 2357–2366 (2014)

    Article  Google Scholar 

  5. Karkee, M., Steward, B.L.: Local and global sensitivity analysis of a tractor and single axle grain cart dynamic system model. Biosyst. Eng. 106(4), 352–366 (2010)

    Article  Google Scholar 

  6. Saltelli, A., Andres, T., Homma, T.: Sensitivity analysis of model output. Performance of the iterated fractional factorial design method. Comput. Stat. Data. Anal. 20(4), 387–407 (1995)

    Article  MATH  Google Scholar 

  7. Saltelli, A., Tarantola, S., Chan, K.: A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41(1), 39–56 (1999)

    Article  Google Scholar 

  8. Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Matematicheskoe Modelirovanie 2(1), 407–414 (1990)

    MATH  Google Scholar 

  9. McRae, G.J., Tilden, J.W., Seinfeld, J.H.: Global sensitivity analysis—a computational implementation of the Fourier amplitude sensitivity test (FAST). Comput. Chem. Eng. 6(1), 15–25 (1982)

    Article  Google Scholar 

  10. Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simulat. 55(1–3), 271–280 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rohmer, J., Foerster, E.: Global sensitivity analysis of large-scale numerical landslide models based on Gaussian-Process meta-modeling. Comput. Geost-UK 37(7), 917–927 (2011)

    Article  Google Scholar 

  12. Song, X., Zhang, J., Kang, S., et al.: Surrogate-based analysis and optimization for the design of heat sinks with jet impingement. IEEE Trans. Compon., Packag., Manuf. Technol. 4(3), 429–437 (2014)

    Article  Google Scholar 

  13. Xing, L., Song, X., Scott, K., et al.: Multi-variable optimisation of PEMFC cathodes based on surrogate modelling. Int. J. Hydrogen. Energ. 38(33), 14295–14313 (2013)

    Article  Google Scholar 

  14. Jin, R., Chen, W., Simpson, T.W.: Comparative studies of metamodeling techniques under multiple modeling criteria. Struct. Multidiscip. O. 23(1), 1–13 (2001)

    Article  Google Scholar 

  15. Simpson, T.W., Poplinski, J.D., Koch, P.N., Allen, J.K.: Metamodels for computer-based engineering design: survey and recommendations. Eng. Comput-Germany. 17(2), 129–150 (2001)

    Article  MATH  Google Scholar 

  16. Mohammed, F.H., Russel, R.B., Sanjay, B.J.: Metamodeling: Radial basis functions, versus polynomials, computing. Eur. J. Oper. Res. 138(1), 142–154 (2002)

    Article  MATH  Google Scholar 

  17. Lee, K.H., Kang, D.H.: Structural optimization of an automotive door using the kriging interpolation method. P. I. Mech. Eng. D-J. Aut. 221(12), 1525–1534 (2007)

    Article  Google Scholar 

  18. Marzbanrad, J., Ebrahimi, M.R.: Multi-objective optimization of aluminum hollow tubes for vehicle crash energy absorption using a genetic algorithm and neural networks. Thin. Wall. Struct. 49(12), 1605–1615 (2011)

    Article  Google Scholar 

  19. Sobol’s, I.M., Kucherenko, S.S.: On global sensitivity analysis of quasi-Monte Carlo algorithms. Monte Carlo Methods and Applications 11(1), 1–9 (2005)

    Article  MathSciNet  Google Scholar 

  20. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76(8), 1905–1915 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueguan Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ding, X., Sun, W., Wang, L., Huo, J., Sun, Q., Song, X. (2015). Sensitivity Analysis of Major Equipment Based on Radial Basis Function Metamodel. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R. (eds) Intelligent Robotics and Applications. Lecture Notes in Computer Science(), vol 9246. Springer, Cham. https://doi.org/10.1007/978-3-319-22873-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22873-0_42

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22872-3

  • Online ISBN: 978-3-319-22873-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics