Skip to main content

Solving Three-Objective Flow Shop Problem with Fast Hypervolume-Based Local Search Algorithm

  • Conference paper
Intelligent Computing Methodologies (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8589))

Included in the following conference series:

  • 3421 Accesses

Abstract

In this paper, we present a fast hypervolume-based multi-objective local search algorithm, where the fitness assignment is realized by the approximating computation of hypervolume contribution. In the algorithm, we define an approximate hypervolume contribution indicator as the selection mechanism and apply this indicator to an iterated local search. We carry out a range of experiments on three-objective flow shop problem. Experimental results indicate that our algorithm is highly effective in comparison with the algorithms based on the binary indicators and the exact hypervolume contribution indicator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bader, J., Zitzler, E.: HypE: An algorithm for fast hypervolume-based many-objective optimization. IEEE Transactions on Evolutionary Computation 19(1), 45–76 (2011)

    Article  Google Scholar 

  2. Basseur, M., Liefooghe, A., Le, K., Burke, E.: The efficiency of indicator-based local search for multi-objective combinatorial optimization problems. Journal of Heuristics 18(2), 263–296 (2012)

    Article  Google Scholar 

  3. Basseur, M., Zeng, R.-Q., Hao, J.-K.: Hypervolume-based multi-objective local search. Neural Computing and Applications 21(8), 1917–1929 (2012)

    Article  Google Scholar 

  4. Basseur, M., Seynhaeve, F., Talbi, E.-G.: Design of multi-objective evolutionary algorithms: application to the flow-shop scheduling problem. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2002), Honlulu, USA, vol. 2, pp. 1151–1156 (2002)

    Google Scholar 

  5. Bradstreet, L., While, L., Braone, L.: A fast incremental hypervolume algorithm. IEEE Transactions on Evolutionary Computation 12(6), 714–723 (2008)

    Article  Google Scholar 

  6. Bringmann, K., Friedrich, T.: Don’t be greedy when calculating hypervolume contributions. In: FOGA 1990: Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, pp. 103–112. ACM, New York (2009)

    Google Scholar 

  7. Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation). Springer-Verlag New York, Inc., Secaucus (2006)

    Google Scholar 

  8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2000)

    Article  Google Scholar 

  9. Du, J., Leung, J.Y.-T.: Minimizing total tardiness on one machine is NP-hard. Mathematics of Operations Research 15, 483–495 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms – part II: application example. Mathematics of Operations Research 28(1), 38–47 (1998)

    Google Scholar 

  11. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics 5, 287–326 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  12. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Operational Research 64, 278–285 (1993)

    Article  MATH  Google Scholar 

  13. While, R.L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervolume. IEEE Transactions on Evolutionary Computation 10(1), 29–38 (2006)

    Article  Google Scholar 

  14. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

    Google Scholar 

  15. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. TIK Report 103, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Zurich, Switzerland (2001)

    Google Scholar 

  16. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analusis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zeng, RQ., Shang, MS. (2014). Solving Three-Objective Flow Shop Problem with Fast Hypervolume-Based Local Search Algorithm. In: Huang, DS., Jo, KH., Wang, L. (eds) Intelligent Computing Methodologies. ICIC 2014. Lecture Notes in Computer Science(), vol 8589. Springer, Cham. https://doi.org/10.1007/978-3-319-09339-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09339-0_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09338-3

  • Online ISBN: 978-3-319-09339-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics