Skip to main content

On the Influence of Constitutive Models on Shape Optimization for Artificial Blood Pumps

  • Chapter
  • First Online:
  • 2730 Accesses

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 160))

Abstract

We report on a shape optimization framework that couples a highlyparallel finite element solver with a geometric kernel and different optimization algorithms. The entire optimization framework is transformed with automatic differentiation techniques, and the derivative code is employed to compute derivatives of the optimal shapes with respect to viscosity. This methodology provides a powerful tool to investigate the necessity of intricate constitutive models by taking derivatives with respect to model parameters

Mathematics Subject Classification (2000). Primary 76D55; Secondary 90C31.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Abraham, M. Behr, and M. Heinkenschloss. Shape optimization in steady blood flow: A numerical study of non-Newtonian effects. Computer Methods in Biomechanics and Biomedical Engineering, 8(2):127–137, 2005.

    Article  Google Scholar 

  2. F. Abraham, M. Behr, and M. Heinkenschloss. Shape optimization in unsteady blood flow: A numerical study of non-Newtonian effects. Computer Methods in Biomechanics and Biomedical Engineering, 8(3):201–212, 2005.

    Article  Google Scholar 

  3. D. Arora, M. Behr, and M. Pasquali. A tensor-based measure for estimating blood damage. Artificial Organs, 28:1002–1015, 2004.

    Article  Google Scholar 

  4. M. Behr and T.E. Tezduyar. Finite element solution strategies for large-scale flow simulations. Computer Methods in Applied Mechanics and Engineering, 112:3–24, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  5. C.H. Bischof, A. Carle, P. Khademi, and A. Mauer. ADIFOR2.0: Automatic differentiation of Fortran 77 programs. IEEE Computational Science & Engineering, 3(3):18–32, 1996.

    Article  Google Scholar 

  6. S. Chien, R. King, R. Skalak, S. Usami, and A. Copley. Viscoelastic properties of human blood and red cell suspensions. Biorheology, 12(6):341–346, 1975.

    Article  Google Scholar 

  7. A.V. Fiacco. Introduction to Sensitivity and Stability Analysis. Number 165 in Mathematics in Science and Engineering. Academic Press, New York, 1983.

    Google Scholar 

  8. A. Garon and M.-I. Farinas. Fast 3D numerical hemolysis approximation. Artificial Organs, 28(11):1016–1025, 2004.

    Article  Google Scholar 

  9. F. Gijsen, F. van de Vosse, and J. Janssen. The influence of the non-Newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation model. Journal of Biomechanics, 32:601–608, 1999.

    Article  Google Scholar 

  10. L. Goubergrits and K. Affeld. Numerical estimation of blood damage in artificial organs. Artificial Organs, 28(5):499–507, 2004.

    Article  Google Scholar 

  11. R. Griesse and A. Walther. Parametric sensitivities for optimal control problems using automatic differentiation. Optimal Control Applications and Methods, 24(6):297–314, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Number 105 in Other Titles in Applied Mathematics. SIAM, Philadelphia, PA, 2nd edition, 2008.

    Google Scholar 

  13. L. Gu and W. Smith. Evaluation of computational models for hemolysis estimation. ASAIO Journal, 51:202–207, 2005.

    Article  Google Scholar 

  14. L. Hascoët and V. Pascual. Tapenade 2.1 user’s guide. Technical Report 0300, INRIA, 2004.

    Google Scholar 

  15. J. Haslinger and R. Mäkinen. Introduction to Shape Optimization: Theory, Approximation, and Computation. Advances in Design and Control. SIAM, Philadelphia, PA, 2003.

    Google Scholar 

  16. B. Hentschel, I. Tedjo, M. Probst, M. Wolter, M. Behr, C. Bischof, and T. Kuhlen. Interactive Blood Damage Analysis for Ventricular Assist Devices. IEEE Transactions on Visualization and Computer Graphics, 14:1515–1522, 2008.

    Article  Google Scholar 

  17. B. Johnston, P. Johnston, S. Corney, and D. Kilpatrick. Non-Newtonian blood flow in human right coronary arteries: Steady state simulations. Journal of Biomechanics, 37:709–720, 2004.

    Article  Google Scholar 

  18. M. Lukáčová-Medvid’ová and A. Zaušková. Numerical modelling of shear-thinning non-Newtonian flows in compliant vessels. International Journal for Numerical Methods in Fluids, 56(8):1409–1415, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Piegl and W. Tiller. The NURBS Book. Monographs in visual communication. Springer-Verlag, 2nd edition, 1997.

    Google Scholar 

  20. M. Probst, M. Lülfesmann, H.M. Bücker, M. Behr, and C.H. Bischof. Sensitivity analysis for artificial grafts using automatic differentiation. International Journal for Numerical Methods in Fluids, 62(9):1047–1062, 2010.

    MATH  Google Scholar 

  21. M. Probst, M. Lülfesmann, M. Nicolai, H.M. Bücker, M. Behr, and C.H. Bischof. Sensitivity of optimal shapes of artificial grafts with respect to flow parameters. Computer Methods in Applied Mechanics and Engineering, 199:997–1005, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  22. L.B. Rall. Automatic Differentiation: Techniques and Applications, volume 120 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1981.

    Google Scholar 

  23. P. Spellucci. A new technique for inconsistent QP problems in the SQP method. Mathematical Methods of Operations Research, 47:355–400, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Spellucci. An SQP method for general nonlinear programs using only equality constrained subproblems. Mathematical Programming, 82:413–448, 1998.

    MathSciNet  MATH  Google Scholar 

  25. G. Thurston. Viscoelasticity of human blood. Biophysical Journal, 12:1205–1217, 1972.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Probst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Probst, M., Lülfesmann, M., Nicolai, M., Bücker, H.M., Behr, M., Bischof, C.H. (2012). On the Influence of Constitutive Models on Shape Optimization for Artificial Blood Pumps. In: Leugering, G., et al. Constrained Optimization and Optimal Control for Partial Differential Equations. International Series of Numerical Mathematics, vol 160. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0133-1_32

Download citation

Publish with us

Policies and ethics