Skip to main content

Graph Rewriting for Graph Neural Networks

  • Conference paper
  • First Online:
Graph Transformation (ICGT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13961))

Included in the following conference series:

  • 258 Accesses

Abstract

Given graphs as input, Graph Neural Networks (GNNs) support the inference of nodes, edges, attributes, or graph properties. Graph Rewriting investigates the rule-based manipulation of graphs to model complex graph transformations. We propose that, therefore, (i) graph rewriting subsumes GNNs and could serve as formal model to study and compare them, and (ii) the representation of GNNs as graph rewrite systems can help to design and analyse GNNs, their architectures and algorithms. Hence we propose Graph Rewriting Neural Networks (GReNN) as both novel semantic foundation and engineering discipline for GNNs. We develop a case study reminiscent of a Message Passing Neural Network realised as a Groove graph rewriting model and explore its incremental operation in response to dynamic updates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allamanis, M., Brockschmidt, M., Khademi, M.: Learning to represent programs with graphs. arXiv:1711.00740 [cs], May 2018. https://arxiv.org/abs/1711.00740

  2. Anjum, A., Ikram, A., Hill, R., Antonopoulos, N., Liu, L., Sotiriadis, S.: Approaching the internet of things (IoT): a modelling, analysis and abstraction framework. Concurrency Comput.: Pract. Experience 27(8), 1966–1984 (2013)

    Google Scholar 

  3. Bronstein, M.: Using subgraphs for more expressive GNNs. Medium, December 2021. https://towardsdatascience.com/using-subgraphs-for-more-expressive-gnns-8d06418d5ab

  4. Bronstein, M.: Beyond message passing: a physics-inspired paradigm for graph neural networks. Gradient (2022). https://thegradient.pub/graph-neural-networks-beyond-message-passing-and-weisfeiler-lehman

  5. Brown, K., Patterson, E., Hanks, T., Fairbanks, J.P.: Computational category-theoretic rewriting. In: Behr, N., Strüber, D. (eds.) Graph Transformation - 15th International Conference, ICGT 2022, Held as Part of STAF 2022, Nantes, France, July 7–8, 2022, Proceedings. Lecture Notes in Computer Science, vol. 13349, pp. 155–172. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09843-7_9

  6. Duvenaud, D., et al.: Convolutional networks on graphs for learning molecular fingerprints. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems, December 2015, pp. 7–12 (2015). Montreal, Quebec, Canada, pp. 2224–2232 (2015). https://proceedings.neurips.cc/paper/2015/hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.html

  7. Eksombatchai, C., et al.: Pixie: a system for recommending 3+ billion items to 200+ million users in real-time. arXiv:1711.07601 [cs], November 2017. https://arxiv.org/abs/1711.07601

  8. Galke, L., Vagliano, I., Scherp, A.: Incremental training of graph neural networks on temporal graphs under distribution shift. CoRR abs/2006.14422 (2020). https://arxiv.org/abs/2006.14422

  9. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling and analysis using GROOVE. Int. J. Softw. Tools Technol. Transf. 14(1), 15–40 (2012). https://doi.org/10.1007/s10009-011-0186-x

    Article  Google Scholar 

  10. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. CoRR abs/1704.01212 (2017). http://arxiv.org/abs/1704.01212

  11. Han, X., Jia, M., Chang, Y., Li, Y., Wu, S.: Directed message passing neural network (D-MPNN) with graph edge attention (GEA) for property prediction of biofuel-relevant species. Energy AI 10, 100201 (2022). https://www.sciencedirect.com/science/article/pii/S2666546822000477

  12. Heckel, R., Taentzer, G.: Graph Transformation for Software Engineers. Springer International Publishing, Cham (2020). http://graph-transformation-for-software-engineers.org/

  13. Hogan, A., et al.: Knowledge Graphs. No. 22 in Synthesis Lectures on Data, Semantics, and Knowledge. Morgan & Claypool (2021). https://kgbook.org/

  14. Lample, G., Charton, F.: Deep learning for symbolic mathematics. arXiv:1912.01412 [cs], December 2019. https://arxiv.org/abs/1912.01412

  15. Lange, O., Perez, L.: Traffic prediction with advanced graph neural networks, September 2020. https://www.deepmind.com. https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks

  16. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S.: Gated graph sequence neural networks. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2–4, 2016, Conference Track Proceedings (2016). http://arxiv.org/abs/1511.05493

  17. Monti, F., Frasca, F., Eynard, D., Mannion, D., Bronstein, M.M.: Fake news detection on social media using geometric deep learning. arXiv:1902.06673 [cs, stat], February 2019. https://arxiv.org/abs/1902.06673

  18. Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., Battaglia, P.: Learning to simulate complex physics with graph networks, November 2020. https://proceedings.mlr.press/v119/sanchez-gonzalez20a.html

  19. Sanchez-Lengeling, B., Reif, E., Pearce, A., Wiltschko, A.: A gentle introduction to graph neural networks. Distill 6(8), August 2021

    Google Scholar 

  20. Schad, J.: Graph powered machine learning: Part 1. ML Conference Berlin, October 2021. https://mlconference.ai/ml-summit/

  21. Schütt, K.T., Arbabzadah, F., Chmiela, S., Müller, K.R., Tkatchenko, A.: Quantum-chemical insights from deep tensor neural networks. Nat. Commun. 8(1), January 2017. https://doi.org/10.1038%2Fncomms13890

  22. Stokes, J.M., et al.: A deep learning approach to antibiotic discovery. Cell 180(4), 688–702.e13, February 2020. https://www.cell.com/cell/fulltext/S0092-8674(20)30102-1

  23. Wang, Z., et al.: Heterogeneous relational message passing networks for molecular dynamics simulations. CoRR abs/2109.00711 (2021). https://arxiv.org/abs/2109.00711

  24. Xu, L., He, Z.Y., Wang, K., Wang, C.D., Huang, S.Q.: Explicit message-passing heterogeneous graph neural network. IEEE Trans. Knowl. Data Eng., 1–13 (2022)

    Google Scholar 

  25. Zhou, J., et al.: Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020). https://www.sciencedirect.com/science/article/pii/S2666651021000012

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adam Machowczyk or Reiko Heckel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Machowczyk, A., Heckel, R. (2023). Graph Rewriting for Graph Neural Networks. In: Fernández, M., Poskitt, C.M. (eds) Graph Transformation. ICGT 2023. Lecture Notes in Computer Science, vol 13961. Springer, Cham. https://doi.org/10.1007/978-3-031-36709-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36709-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36708-3

  • Online ISBN: 978-3-031-36709-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics