Skip to main content

Homomorphic Decryption in Blockchains via Compressed Discrete-Log Lookup Tables

  • Conference paper
  • First Online:
Data Privacy Management, Cryptocurrencies and Blockchain Technology (DPM 2021, CBT 2021)

Abstract

Many privacy preserving blockchain and e-voting systems are based on the modified ElGamal scheme that supports homomorphic addition of encrypted values. For practicality reasons though, decryption requires the use of precomputed discrete-log (dlog) lookup tables along with algorithms like Shanks’s baby-step giant-step and Pollard’s kangaroo. We extend the Shanks approach as it is the most commonly used method in practice due to its determinism and simplicity, by proposing a truncated lookup table strategy to speed up decryption and reduce memory requirements. While there is significant overhead at the precomputation phase, these costs can be parallelized and only paid once and for all. As a starting point, we evaluated our solution against the widely-used secp family of elliptic curves and show that we can achieve storage reduction by 7x–14x, depending on the group size. Our algorithm can be immediately imported to existing works, especially when the range of encrypted values is known, such as in Zether, PGC and Solidus protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Similar compression techniques are also discussed in [3], but our work focuses on collision-free tables per group to completely avoid false positives.

  2. 2.

    While we assume the binary representation of \(g^x\) is random, we can employ a hash function if g has some special property.

  3. 3.

    Note that the cost of a hashmap lookup is insignificant compared to elliptic curve (EC) point addition (about 40 times in our implementation), while a scalar to EC point multiplication is around 32 times more expensive than EC point addition using the double-and-add method for small 32-bit scalars.

References

  1. Cube-root discrete-logarithm algorithms for secure groups. http://cr.yp.to/dlog/cuberoot.html

  2. libpgc: a c++ library for pretty good confidential transaction system. https://github.com/yuchen1024/libPGC/tree/master/PGC_openssl/PGC

  3. Bernstein, D.J., Lange, T.: Computing small discrete logarithms faster. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 317–338. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7_19

    Chapter  Google Scholar 

  4. Bernstein, D.J., Lange, T.: Two grumpy giants and a baby. Cryptology ePrint Archive, Report 2012/294 (2012). http://eprint.iacr.org/2012/294

  5. Blake, I.F., Murty, V.K., Xu, G.: A note on window \(\tau \)-naf algorithm. Inf. Process. Lett. 95(5), 496–502 (2005)

    Article  MathSciNet  Google Scholar 

  6. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: towards privacy in a smart contract world. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 423–443. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_23

    Chapter  Google Scholar 

  7. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: IEEE S&P (2018)

    Google Scholar 

  8. Cecchetti, E., Zhang, F., Ji, Y., Kosba, A.E., Juels, A., Shi, E.: Solidus: confidential distributed ledger transactions via PVORM. In: ACM CCS 2017 (2017)

    Google Scholar 

  9. Chatzigiannis, P.: Compressed small discrete-log table python code and secp256r1 precomputed table. https://github.com/PanosChtz/Homomorphic-DLog-lookup-tables

  10. Chen, Yu., Ma, X., Tang, C., Au, M.H.: PGC: decentralized confidential payment system with auditability. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12308, pp. 591–610. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58951-6_29

    Chapter  Google Scholar 

  11. Fauzi, P., Meiklejohn, S., Mercer, R., Orlandi, C.: Quisquis: a new design for anonymous cryptocurrencies. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 649–678. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_23

    Chapter  Google Scholar 

  12. Galbraith, S.D., Gaudry, P.: Recent progress on the elliptic curve discrete logarithm problem. Des. Codes Cryptogr. 78(1), 51–72 (2015). https://doi.org/10.1007/s10623-015-0146-7

    Article  MathSciNet  MATH  Google Scholar 

  13. Galbraith, S.D., Wang, P., Zhang, F.: Computing elliptic curve discrete logarithms with improved baby-step giant-step algorithm. Cryptology ePrint Archive, Report 2015/605 (2015). http://eprint.iacr.org/2015/605

  14. Mavroudis, V.: Computing small discrete logarithms using optimized lookup tables (2015). USCB, Koç Lab

    Google Scholar 

  15. Peng, K., Aditya, R., Boyd, C., Dawson, E., Lee, B.: Multiplicative homomorphic e-voting. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 61–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30556-9_6

    Chapter  Google Scholar 

  16. Pollard, J.M.: Monte Carlo methods for index computation mod \(p\). Math. Comput. 32, 918–924 (1978)

    MathSciNet  MATH  Google Scholar 

  17. Pollard, J.M.: Kangaroos, monopoly and discrete logarithms. J. Cryptol. 13(4), 437–447 (2000). https://doi.org/10.1007/s001450010010

    Article  MathSciNet  MATH  Google Scholar 

  18. Shanks, D.: Five number-theoretic algorithms (1973)

    Google Scholar 

  19. Ugus, O., Hessler, A., Westhoff, D.: Performance of additive homomorphic ec-elgamal encryption for tinypeds. 6. Fachgespräch Sensornetzwerke (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Chatzigiannis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chatzigiannis, P., Chalkias, K., Nikolaenko, V. (2022). Homomorphic Decryption in Blockchains via Compressed Discrete-Log Lookup Tables. In: Garcia-Alfaro, J., Muñoz-Tapia, J.L., Navarro-Arribas, G., Soriano, M. (eds) Data Privacy Management, Cryptocurrencies and Blockchain Technology. DPM CBT 2021 2021. Lecture Notes in Computer Science(), vol 13140. Springer, Cham. https://doi.org/10.1007/978-3-030-93944-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93944-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93943-4

  • Online ISBN: 978-3-030-93944-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics