Skip to main content

Activity Prediction of Business Process Instances with Inception CNN Models

  • Conference paper
  • First Online:
Book cover AI*IA 2019 – Advances in Artificial Intelligence (AI*IA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11946))

Abstract

Predicting the next activity of a running execution trace of a business process represents a challenging task in process mining. The problem has been already tackled by using different machine learning approaches. Among them, deep artificial neural networks architectures suited for sequential data, such as recurrent neural networks (RNNs), recently achieved the state of the art results. However, convolutional neural networks (CNNs) architectures can outperform RNNs on tasks for sequence modeling, such as machine translation. In this paper we investigate the use of stacked inception CNN modules for the next-activity prediction problem. The proposed neural network architecture leads to better results when compared to RNNs architectures both in terms of computational efficiency and prediction accuracy on different real-world datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The original code used in [23] is available at https://github.com/TaXxER/rnnalpha.

  2. 2.

    https://doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6.

  3. 3.

    https://doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6.

  4. 4.

    https://doi.org/10.17632/39bp3vv62t.1

  5. 5.

    https://keras.io/.

  6. 6.

    https://www.tensorflow.org/.

  7. 7.

    Source code available at https://github.com/nicoladimauro/nnpm.

References

  1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    Book  Google Scholar 

  2. Appice, A., Mauro, N.D., Malerba, D.: Leveraging shallow machine learning to predict business process behavior. In: SCC, pp. 184–188 (2019)

    Google Scholar 

  3. Bai, S., Kolter, J.Z., Koltun, V.: Convolutional sequence modeling revisited. In: ICLR (2018)

    Google Scholar 

  4. Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language model. JMLR 3, 1137–1155 (2003)

    MATH  Google Scholar 

  5. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: NIPS, pp. 2546–2554 (2011)

    Google Scholar 

  6. Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive models for business processes. J. MIS Q. 40, 1009–1034 (2016)

    Article  Google Scholar 

  7. Brier, G.W.: Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78(1), 1–3 (1950)

    Article  Google Scholar 

  8. Cho, K., et al.: Learning phrase representations using RNN encoder–decoder for statistical machine translation. In: EMNLP, pp. 1724–1734 (2014)

    Google Scholar 

  9. Chorowski, J.K., Bahdanau, D., Serdyuk, D., Cho, K., Bengio, Y.: Attention-based models for speech recognition. In: NIPS, pp. 577–585 (2015)

    Google Scholar 

  10. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018)

    Google Scholar 

  11. Evermann, J., Rehse, J.-R., Fettke, P.: A deep learning approach for predicting process behaviour at runtime. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 327–338. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58457-7_24

    Chapter  Google Scholar 

  12. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Petrucci, G., Yeshchenko, A.: An eye into the future: leveraging a-priori knowledge in predictive business process monitoring. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 252–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-5_15

    Chapter  Google Scholar 

  13. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS, pp. 249–256 (2010)

    Google Scholar 

  14. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: AISTATS, vol. 15, pp. 315–323. PMLR (2011)

    Google Scholar 

  15. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  17. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2014)

    Google Scholar 

  18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. CACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  19. LeCun, Y., Haffner, P., Bottou, L., Bengio, Y.: Object recognition with gradient-based learning. In: Shape, Contour and Grouping in Computer Vision. LNCS, vol. 1681, pp. 319–345. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46805-6_19

    Chapter  Google Scholar 

  20. Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Time and activity sequence prediction of business process instances. Computing 100(9), 1005–1031 (2018)

    Article  MathSciNet  Google Scholar 

  21. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  22. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  23. Tax, N., Teinemaa, I., van Zelst, S.J.: An interdisciplinary comparison of sequence modeling methods for next-element prediction. CoRR abs/1811.00062 (2018)

    Google Scholar 

  24. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30

    Chapter  Google Scholar 

Download references

Acknowlegments

This research is partially funded by the Knowledge Community for Efficient Training through Virtual Technologies Italian project (KOMETA, code 2B1MMF1), under the program POR Puglia FESR-FSE 2014–2020 - Asse prioritario 1 - Ricerca, sviluppo tecnologico, innovazione - SubAzione 1.4.b - BANDO INNOLABS supported by Regione Puglia, as well as by the Electronic Shopping & Home delivery of Edible goods with Low environmental Footprint Italian project (ESHELF), under the Apulian INNONETWORK programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Di Mauro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Di Mauro, N., Appice, A., Basile, T.M.A. (2019). Activity Prediction of Business Process Instances with Inception CNN Models. In: Alviano, M., Greco, G., Scarcello, F. (eds) AI*IA 2019 – Advances in Artificial Intelligence. AI*IA 2019. Lecture Notes in Computer Science(), vol 11946. Springer, Cham. https://doi.org/10.1007/978-3-030-35166-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35166-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35165-6

  • Online ISBN: 978-3-030-35166-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics