Skip to main content

Knowledge Compilation Languages as Proof Systems

  • Conference paper
  • First Online:
Book cover Theory and Applications of Satisfiability Testing – SAT 2019 (SAT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11628))

Abstract

In this paper, we study proof systems in the sense of Cook-Reckhow for problems that are higher in the Polynomial Hierarchy than coNP, in particular, #SAT and maxSAT. We start by explaining how the notion of Cook-Reckhow proof systems can be apply to these problems and show how one can twist existing languages in knowledge compilation such as decision DNNF so that they can be seen as proof systems for problems such as #SAT and maxSAT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A regular resolution proof is a resolution proof where, on each path, a variable is resolved at most once.

References

  1. Beame, P., Li, J., Roy, S., Suciu, D.: Lower bounds for exact model counting and applications in probabilistic databases. In: Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (2013)

    Google Scholar 

  2. Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artif. Intell. 171(8—-9), 606–618 (2007)

    Article  MathSciNet  Google Scholar 

  3. Bova, S., Capelli, F., Mengel, S., Slivovsky, F.: Knowledge compilation meets communication complexity. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016, pp. 1008–1014 (2016)

    Google Scholar 

  4. Capelli, F.: Structural restrictions of CNF formulas: application to model counting and knowledge compilation. PhD thesis, Université Paris Diderot (2016)

    Google Scholar 

  5. Clegg, M., Edmonds, J., Impagliazzo, R.: Using the groebner basis algorithm to find proofs of unsatisfiability. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC 1996 (1996)

    Google Scholar 

  6. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, pp. 151–158. ACM (1971)

    Google Scholar 

  7. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb. Log. 44(1), 36–50 (1979)

    Article  MathSciNet  Google Scholar 

  8. Darwiche, A.: On the tractable counting of theory models and its application to truth maintenance and belief revision. J. Appl. Non-Classical Log. 11(1–2), 11–34 (2001)

    Article  MathSciNet  Google Scholar 

  9. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17, 229–264 (2002)

    Article  MathSciNet  Google Scholar 

  10. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)

    Article  MathSciNet  Google Scholar 

  11. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)

    Article  MathSciNet  Google Scholar 

  12. Huang, J., Darwiche, A.: DPLL with a trace: from SAT to knowledge compilation. In: Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, pp. 156–162 (2005)

    Google Scholar 

  13. Jukna, S.: Boolean Function Complexity - Advances and Frontiers. Algorithms and combinatorics, vol. 27. Springer, Heidelberg (2012)

    Book  Google Scholar 

  14. Koriche, F., Le Berre, D., Lonca, E., Marquis, P.: Fixed-parameter tractable optimization under DNNF constraints. In: ECAI 2016–22nd European Conference on Artificial Intelligence, 29 August-2 September 2016, The Hague, The Netherlands - Including Prestigious Applications of Artificial Intelligence (PAIS 2016), pp. 1194–1202 (2016)

    Google Scholar 

  15. Lagniez, J.-M., Marquis, P.: An improved decision-DNNF compiler. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017 (2017)

    Google Scholar 

  16. Lagniez, J.-M., Marquis, P., Szczepanski, N.: DMC: a distributed model counter. In: IJCAI, pp. 1331–1338 (2018)

    Google Scholar 

  17. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MAXSAT resolution. In: Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  18. Nordström, J.: Pebble games, proof complexity, and time-space trade-offs. Logical Methods Comput. Sci. (LMCS) 9(3) (2013)

    Google Scholar 

  19. Oztok, U., Darwiche, A.: A top-down compiler for sentential decision diagrams. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, pp. 3141–3148 (2015)

    Google Scholar 

  20. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning sat solvers as resolution engines. Artif. Intell. 175(2), 512–525 (2011)

    Article  MathSciNet  Google Scholar 

  21. Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining component caching and clause learning for effective model counting. Theory Appl. Satisf. Test. 4, 7th (2004)

    Google Scholar 

  22. Thurley, M.: sharpSAT – counting models with advanced component caching and implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 424–429. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_38

    Chapter  Google Scholar 

  23. Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM, Philadelphia (2000)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Capelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Capelli, F. (2019). Knowledge Compilation Languages as Proof Systems. In: Janota, M., Lynce, I. (eds) Theory and Applications of Satisfiability Testing – SAT 2019. SAT 2019. Lecture Notes in Computer Science(), vol 11628. Springer, Cham. https://doi.org/10.1007/978-3-030-24258-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24258-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24257-2

  • Online ISBN: 978-3-030-24258-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics