Skip to main content

Real-Time RGBD Reconstruction Using Structural Constraint for Indoor AR

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11164))

Abstract

RGBD-based 3D indoor scene reconstruction has been paid much attention due to the advantage of consumer depth camera. It is significant for many interactive application, especially in augmented reality. At present, the AR system mainly focus on the issue of the instabilities in the registration without any marker (i.e. error accumulation in camera pose estimate). Current methods generally consider isolate point cloud pairwise as the argument in the registration and ignore the prior correlation of geometric structures in the indoor scene. In our work, we focus on the issue and propose a novel, structural-based AR framework. Specifically, we use a two-pass scheme strategy to execute the system. The first pass tracks camera and analyze scene structure timely at video rate. We apply structural constraint to the iterative-closest-point algorithm and generate a new pose optimization strategy. We also incorporate the structure information into the global model integration and improve the reconstruction quality. Comparing with other state-of-the-art online reconstruction methods, our approach significantly reduces pose drift. The second pass simultaneously processing occlusion between virtual objects and real scene with the advent of prior structure analysis to improve the realism in AR.

This work was supported in part by the National Natural Science Foundation of China under Grant 61572054, in part by the Applied Basic Research Program of Qingdao under Grant 16-10-1-3-xx.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Newcombe, R.A., Izadi, S., Hilliges, O., et al.: KinectFusion: real-time dense surface mapping and tracking. In: IEEE International Symposium on Mixed and Augmented Reality, pp. 127–136. IEEE (2012)

    Google Scholar 

  2. Nießner, M., Zollhofer, M., Izadi, S., Stamminger, M.: Real-time 3D reconstruction at scale using voxel hashing. ACM Trans. Graph. 32(6), 169 (2013)

    Article  Google Scholar 

  3. Newcombe, R.A., Fox, D., Seitz, S.M.: DynamicFusion: reconstruction and tracking of non-rigid scenes in real-time. In: Computer Vision and Pattern Recognition, pp. 343–352. IEEE (2015)

    Google Scholar 

  4. Chen, J., Bautembach, D., Izadi, S.: Scalable real-time volumetric surface reconstruction. ACM Trans. Graph. 32(4), 1–16 (2013)

    MATH  Google Scholar 

  5. Lefloch, D., Kluge, M., Sarbolandi, H., et al.: Comprehensive use of curvature for robust and accurate online surface reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2349 (2017)

    Article  Google Scholar 

  6. Keller, M., Lefloch, D., Lambers, M., et al.: Real-time 3D reconstruction in dynamic scenes using point-based fusion. In: International Conference on 3D Vision - 3DV, pp. 1–8. IEEE (2013)

    Google Scholar 

  7. Zhang, Y., Xu, W., Tong, Y., et al.: Online structure analysis for real-time indoor scene reconstruction. ACM Trans. Graph. 34(5), 159 (2015)

    Article  Google Scholar 

  8. Weik, S.: Registration of 3-D partial surface models using luminance and depth information. In: International Conference on Recent Advances in 3-D Digital Imaging and Modeling, p. 93. IEEE Computer Society (1997)

    Google Scholar 

  9. Whelan, T., Leutenegger, S., Moreno, R.S., et al.: ElasticFusion: dense SLAM without a pose graph. In: Robotics: Science and Systems (2015)

    Google Scholar 

  10. Dai, A., Izadi, S., Theobalt, C.: BundleFusion: real-time globally consistent 3D reconstruction using on-the-fly surface re-integration. ACM Trans. Graph. 6(4), 76a (2017)

    Google Scholar 

  11. Kümmerle, R., Grisetti, G., Strasdat, H., et al.: g\(^2\)o: a general framework for graph optimization. In: IEEE International Conference on Robotics and Automation, pp. 3607–3613. IEEE (2011)

    Google Scholar 

  12. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment — a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44480-7_21

    Chapter  Google Scholar 

  13. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 1–10. IEEE (2008)

    Google Scholar 

  14. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in real-time. In: International Conference on Computer Vision, pp. 2320–2327. IEEE Computer Society (2011)

    Google Scholar 

  15. Godin, G., Rioux, M., Baribeau, R.: Three-dimensional registration using range and intensity information. Proc. SPIE-Int. Soc. Opt. Eng. 2350, 279–290 (1994)

    Google Scholar 

  16. Zhou, Q.Y., Koltun, V.: Depth camera tracking with contour cues. In: Computer Vision and Pattern Recognition, pp. 632–638. IEEE (2015)

    Google Scholar 

  17. Taguchi, Y., Jian, Y.D., Ramalingam, S., et al.: Point-plane SLAM for hand-held 3D sensors. In: IEEE International Conference on Robotics and Automation, pp. 5182–5189. IEEE (2013)

    Google Scholar 

  18. Pathak, K., Birk, A., Vaskevicius, N., et al.: Fast registration based on noisy planes with unknown correspondences for 3-D mapping. IEEE Trans. Robot. 26(3), 424–441 (2010)

    Article  Google Scholar 

  19. Gelfand, N., Rusinkiewicz, S., Ikemoto, L., et al.: Geometrically stable sampling for the ICP algorithm. In: Proceedings of the International Conference on 3-D Digital Imaging and Modeling, 2003, 3DIM 2003, pp. 260–267. IEEE (2003)

    Google Scholar 

  20. Zhang, X., Li, H., Cheng, Z.: Curvature estimation of 3D point cloud surfaces through the fitting of normal section curvatures. In: Proceedings of AsiaGraph, pp. 72–79 (2008)

    Google Scholar 

  21. Glocker, B., Shotton, J., Criminisi, A., et al.: Real time RGBD camera relocalization via randomized ferns for keyframe encoding. IEEE Trans. Vis. Comput. Graph. 21(5), 571–583 (2015)

    Article  Google Scholar 

  22. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: Proceedings of International Conference on Intelligent Robots and Systems (2012)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C., Qi, Y. (2018). Real-Time RGBD Reconstruction Using Structural Constraint for Indoor AR. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11164. Springer, Cham. https://doi.org/10.1007/978-3-030-00776-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00776-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00775-1

  • Online ISBN: 978-3-030-00776-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics