Skip to main content

Quantum Similarity and Quantum Quantitative Structure-Properties Relationships (QQSPR)

  • Reference work entry

Definition of the Subject

The concept of Quantum Similarity (QS) was introduced for the first time in 1980 in a paper by Carbó et al. [1] entitled: How Similar is a Molecule to Another? There the basic aspects ofthe theory were set up. The backbone of QS was constituted by the conceptual support of the QSM.

QSM.

A QSM between two quantum objects (QO): associated to the density function (DF) tags: \( { \{\rho_A ,\rho_B\} } \) was defined as the density overlap integral:

$$ Z_{AB} =\int_D \rho_A (\mathbf{r}) \rho_B (\mathbf{r})\mskip2mu\mathrm{d}\mathbf{r} = \langle\rho_A\rho_B\rangle =\langle\rho_B\rho_A\rangle = Z_{BA}\:, $$

which is always a positive real number, because the involved DF are non-negative definite real functions. Self-similarity measure integrals were defined in the same manner:

$$ I=A,B\colon Z_{II} =\int_D \rho_I (\mathbf{r}) \rho_I(\mathbf{r})\mskip2mu\mathrm{d}\mathbf{r} = \big\langle\rho_I^2\big\rangle\:. $$

QS Matrix.

A simple example, which remains formally valid...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The Hadamard product (sometimes also called Schur or Kronecker product) is related to the multiplication result of two sums and constructed by the sum of the resultant diagonal cross-terms only. In this way, the inward (or Hadamard) product of two sums can be specified by the following algorithm:

    $$ \bigg(\sum\limits_I^N a_I\bigg)\ast \bigg(\sum\limits_I^N b_I\bigg) = \sum\limits_I^N a_I b_I\:. $$

    Both sums shall have the same number of terms N, for the IMP being feasible.

  2. 2.

    By the symbol: \( { \mathbf{A}\ast > 0 } \), applied to an arbitrary matrix \( { \mathbf{A}=\{a_{ij}\} } \), is meant that \( { \forall i,j\colon a_{ij} > 0 } \).

  3. 3.

    In the case where the nature of the operator or the set of operators, active in the Sobolev norm definition, has to be specified, then the notation Hilbert–Sobolev ?-, O- or ?-spaces, can be obviously employed.

Abbreviations

Glossary:

There is a brief description of the terms used herein. The defined items appear in alphabetical order. When in a definition a term already defined in the glossary is mentioned, it is written in bold face; then, the reader has to refer to the corresponding glossary item, where more information is given.

Carbó (similarity) index:

The Carbó (Similarity) Index is a QS index, which corresponds to the cosine of the angle subtended by the density function (DF) tags of any pair of quantum objects. The values of the Carbó index lie within the interval \( { (0,1] } \). The lower bound corresponds to a complete dissimilarity, while the unit value is encountered when comparing a quantum object with itself. See also: Euclidian Distance (Similarity) Index.

Core set:

QOS with the additional information of a known and well-defined property value for every QO.

(First order) density function (DF):

The first order DF is a quantum theory concept, associated to a known electronic submicroscopic system. To be understood by this term is a wave function squared module or the full DF, reduced by integration over the space and spin coordinates to a function of the space coordinates of a unique electron. As it is customary in the literature, the name will be shortened to DF. Such a function can be also obtained via direct computation within Density Functional Theory (DFT). DF can be employed as tags associated to well-defined quantum objects. DF are non-negative functions. According to the usual quantum mechanical interpretation, within the DF collection there is contained all the information one can extract from the system. This last statement is the basic postulate which appears in first place when developing QQSPR theory.

(Full) density function:

A quantum theoretical concept, associated to a known electronic (or other particle sets) system. It corresponds to the system's wave function squared module.

Density function (DF) tags:

The tag set, (see: tagged set) collecting the quantum mechanical density functions used as descriptors in a QOS.

DQOS:

Discrete Quantum Object Set. A QOS whose tags are finite dimensional vectors, whose elements, in turn, are computed as quantum similarity measures.

Euclidean distance (similarity) index:

Like the Carbó Index the Euclidean Distance Index is a quantum similarity index, involving the Euclidean distance between two density functions. The range of this index is \( { [0,\infty) } \), thus their minimal values correspond to two identical quantum objects, while the index grows in relation to the difference in the compared quantum objects.

FQQSPR equation:

Fundamental Quantum Quantitative Structure-Properties Relationships equation. The subject of study and analysis of the present contribution. A non-empirical equation, which can be deduced by quantum mechanical theoretical means, serving as the basic tool to obtain QQSAR or Quantum QSAR. Here, only the linear FQQSPR equations are deeply discussed, as they are the main source of QQSPR studies, but the FQQSPR equation can easily be extended to any order.

Molecular descriptors:

Parameters of varied origin: empirical, theoretical or experimental, or functions obtained from quantum mechanical manipulations like the Density Function or the Electrostatic Molecular Potential, or by empirical considerations, associated to a given molecule, which represent the molecular structure environment and can be employed to obtain QSPR. Any set of parameters or functions, which can be used as tags in a tagged set, whose objects are molecules.

QO:

Quantum Object. An element of a QOS, a tagged set where every element is constructed as a composite of a submicroscopic system description (the object) and a density function (the tag). The possibility to represent all the information contained within any quantum system by the full or reduced DF, permits one to describe such an entity formed by the structure of the system and its DF together; this can be called a QO. Plural: QO's.

QOS:

Quantum Object Set. A tagged set made of QO's.

QS:

Quantum Similarity: A discipline dealing with similarity measures between submicroscopic systems. Such kinds of quantum similarity measures (QSM) can be computed using the quantum theoretical description of such kinds of objects. According to quantum theory all the information one can obtain about a quantum system is contained in the state DF and the set of possible reduced forms, hence quantum similarity is part of this information contained in the DF. Usually, for computational convenience, the (first order reduced) DF has been employed as a universal descriptor for comparison purposes and it is the employed tag of a QO. Similarity comparisons become possible by means of comparing the QO DF tags.

QSAC:

Quantum Similarity Aufbau Condition: A condition that the QS Matrix has to comply with in order to be positive definite and admit Choleski decomposition.

QSAR & QSTR:

QSAR are QSPR employed to estimate biological molecular activity values via molecular descriptors. When QSPR are employed to estimate molecular toxicity, they can be called QSTR.

Quantum similarity matrices (QS matrices):

[Depending on the context so as not to cause confusion with the term QS Measures the abbreviation QSM can also be used to denote QS Matrices]: Any matrix which contains computed QSM results involving several QO. Usually the QS Matrix is symmetric and square when the QSM on the involved elements of a unique QOS are ordered in pairs. In this case the QSAC must hold. The QS Matrix can be rectangular when computing and ordering into a matrix the QSM of two different QOS. QS Hypermatrices appear when higher order QSM associated to more than two DF are involved.

Quantum similarity measures (QSM) and indices (QSI):

A positive definite integral, computed employing the QO DF tags as integrands and, if necessary, including a positive definite operator which can be supposed to act as a weight. Possessing the structure of a measure, such an integral can be interpreted as a generalized volume. QSM between two or several QO correspond to integrals, which can be constructed primarily with integrands made with the product of the density tags of the compared quantum objects plus a positive definite operator. Such a definition ensures the positive definite nature of the QS integrals. A quantum self-similarity measure corresponds to the QSM computed with the density function tags of a unique QO. QSI are manipulations of the QSM in order to obtain QS comparisons within an adequate range.

QSPR:

(Classical) Quantitative Structure-Properties Relationships. This term refers to any empirical relationship permitting the connection between molecular structure, represented by a set of parameters (molecular descriptors) of any origin and molecular properties. Usually, by a classical QSPR can be understood a non-causal multilinear relationship, obtained via statistical reasoning and procedures. This is the generic name given to any functional (usually linear) connecting the properties of a molecule with the attached molecular descriptors. The QSPR functionals are empirically obtained by statistical analysis, usually employing (non-)linear regression techniques or any variant of it.

QQSPR:

Quantum Quantitative Structure-Properties Relationships. These are non-empirical functionals derived from the structure of a FQQSPR equation. Thus, this kind of relationship, if it exists, to some extent can be considered causal. A QQSPR permits us to compute the molecular properties of U-molecules, just employing non-empirical considerations and parameters or molecular descriptors of quantum mechanical origin. In this sense, these relationships can be considered universal, applicable to any molecular structure. However, due to the quantum mechanical nature of the QQSPR, one can obtain structure-properties relationships between QO's of any kind: nuclei, atoms, molecules. By QQSPR are here understood QSPR obtained by means of the application of canonical quantum theoretical methods to obtain expectation values of a Hermitian operator, which within QQSPR theory is described by functionals of the density function tags of a given QOS, acting as a basis set. QQSPR are more general than classical QSPR as they can be obtained for any QO, incorporating information difficult to take into account with classical molecular descriptors. The descriptors in the QQSPR framework are the DF tags of the QO.

QS matrix:

Quantum Similarity Matrix. The matrix possessing positive definite elements, constructed by quantum similarity measures using the DF tags of the elements of a QOS. See: Quantum Similarity Matrices.

Tagged set:

A set constructed as the Cartesian product of two separate sets. One of them, the object set is composed of well-defined elements of any nature, called objects. The other set in the tagged set is the tag set, made of some descriptors attached to every object, which is supposed to contain information about the objects; tags can be mathematical elements made by bit strings, vectors, matrices, functions…

U-m:

Unknown (properties) molecule. A molecule which can be described as a QO, but lacks the property information associated to the molecules belonging to the Core Set. U-m properties act as the unknowns to be evaluated in the QQSPR theory developed here.

U-molecule:

U-m.

U-m set:

QOS containing U-m's as elements.

Wave function:

A by-product of solving the Schrödinger equation. When studying stationary submicroscopic systems by means of classical quantum mechanics, the pair energy – wave function correspond to the eigenvalue – eigenfunction pairs of the Hermitian Hamiltonian operator constructed for the system, which substitutes the classical Hamilton function. The squared module of the stationary wave functions for each system state is customarily interpreted, since Born times, as the probability density function to find the system as a whole in some space infinitesimal element of volume.

Bibliography

Primary Literature

  1. Carbó R, Arnau J, Leyda L (1980) How similar is a molecule to another? An electron density measure of similarity between two molecular structures. Int J Quantum Chem 17:1185–1189

    Google Scholar 

  2. Carbó R, Besalú E (1996) Mendeleev conjecture as a consequence of mendeleev postulates. Afinidad 53:77–79

    Google Scholar 

  3. Messiah A (1999) Quantum mechanics. Dover Publications, New York

    Google Scholar 

  4. Bohm D (1989) Quantum theory. Dover Publications, New York

    Google Scholar 

  5. Carbó-Dorca R, Robert D, Amat L, Girones X, Besalu E (2000) Molecular quantum similarity in QSAR and drug design. In: Lecture notes in chemistry, vol 73. Springer, Berlin

    Google Scholar 

  6. Carbó-Dorca R (1995) Molecular similarity and reactivity: From quantum chemical to phenomenological approaches. Kluwer Academic, Dordrecht

    Google Scholar 

  7. Carbó-Dorca R, Besalu E (1998) A general survey of molecular quantum similarity. J Mol Struct Theochem 451:11–23

    Google Scholar 

  8. Carbó-Dorca R (2000) European congress on computational methods in applied sciences and engineering. Barcelona, pp 1–31

    Google Scholar 

  9. Carbó-Dorca R, Besalu E (2000) Quantum theory of QSAR. Contributions Sci 1:399–422

    Google Scholar 

  10. Bultinck P, Girones X, Carbó-Dorca R (2005) Molecular quantum similarity: Theory and applications. In: Lipkowitz KB, Larter R, Cundari T (eds) Reviews in computational chemistry, vol 21. Wiley, Hoboken, pp 127–207

    Google Scholar 

  11. Carbó-Dorca R, Mezey PG (1998) Advances in molecular similarity. JAI Press, London

    Google Scholar 

  12. Carbó-Dorca R (2005) Mathematical elements of quantum electronic density functions. In: Advances in quantum chemistry, vol 49. Elsevier Academic, San Diego, pp 121–208

    Google Scholar 

  13. Carbó-Dorca R, Besalu E (2001) Extended Sobolev and Hilbert spaces and approximate stationary solutions for electronic systems within non-linear Schrödinger equation. J Math Chem 29:3–20

    Google Scholar 

  14. Carbó-Dorca R, Besalu E (2002) Fundamental quantum QSAR (QQSPR) equation: Extensions, nonlinear terms and generalizations within extended Hilbert–Sobolev spaces. Int J Quantum Chem 88:167–182

    Google Scholar 

  15. Johnson MA, Maggiora GM (1990) Concepts and applications of molecular similarity. Wiley, New York

    Google Scholar 

  16. Carbó R, Calabuig B, Besalú E, Martínez A (1992) Triple density molecular quantum similarity measures: A general connection between theoretical calculations and experimental results. Mol Eng 2:43–64

    Google Scholar 

  17. Carbo R, Calabuig B, Vera L, Besalu E (1994) Molecular quantum similarity: Theoretical framework, ordering principles, and visualization techniques. In: Advances in quantum chemistry, vol 25. Academic Press, San Diego, pp 253–313

    Google Scholar 

  18. Carbó-Dorca R (2001) Inward matrix products: Extensions and applications to quantum mechanical foundations of QSAR. J Mol Struct Theochem 537:41–54

    Google Scholar 

  19. Carbó-Dorca R, Amat L, Besalu E, Girones X, Robert D (2000) Quantum mechanical origin of QSAR: Theory and applications. J Mol Struct Theochem 504:181–228

    Google Scholar 

  20. Carbo R, Besalu E, Amat L, Fradera X (1995) Quantum molecular similarity measures (QMSM) as a natural way leading towards a theoretical foundation of quantitative structure-activity relationships (QSPR). J Math Chem 18:237–246

    MATH  Google Scholar 

  21. Carbó-Dorca R, Besalu E, Amat L, Fradera X (1996) Quantum molecular similarity measures: Concepts, definitions, and applications to quantitative structure-property relationships. In: Carbó-Dorca R, Mezey PG (eds) Advances in molecular similarity. JAI Press, London, pp 1–42

    Google Scholar 

  22. Carbó-Dorca R, Amat L, Besalú E, Gironés X, Robert D (2001) Quantum molecular similarity: Theory and applications to the evaluation of molecular properties, biological activities and toxicity. In: Carbó-Dorca R, Gironés X, Mezey PG (eds) Fundamentals of molecular similarity. Proc of 4th girona seminar on molecular similarity. Kluwer Academic/Plenum Publishers, New York, chap 12, pp. 187–320

    Google Scholar 

  23. Carbó-Dorca R (1997) Fuzzy sets and boolean tagged sets. J Math Chem 22:143–147

    Google Scholar 

  24. Carbó-Dorca R (1998) Tagged sets, convex sets and QS measures. J Math Chem 23:353–364

    Google Scholar 

  25. Carbó-Dorca R (1998) Fuzzy sets and boolean tagged sets; vector semispaces and convex sets; quantum similarity measures and ASA density functions; diagonal vector spaces and quantum chemistry. In: Carbó-Dorca R, Mezey PG (eds) Advances in molecular similarity. JAI Press, London, pp 43–72

    Google Scholar 

  26. Robert D, Girones X, Carbó-Dorca R (2000) Quantification of the influence of single point mutations on haloalkane dehalogenase activity: A molecular quantum similarity study. J Chem Inf Comput Sci 40:839–846

    Google Scholar 

  27. Robert D, Amat L, Carbó-Dorca R (2000) Quantum similarity QSAR: Study of inhibitors binding to trhombin, trypsin and factor Xa, including a comparision with CoMFA and CoMSIA methods. Int J Quantum Chem 80:265–282

    Google Scholar 

  28. Girones X, Gallegos A, Carbó-Dorca R (2000) Modelling antimalarial activity: Application of kinetic energy density quantum similarity measures as descriptors in QSAR. J Chem Inf Comput Sci 40:1400–1407

    Google Scholar 

  29. Robert D, Girones X, Carbó-Dorca R (2000) Molecular quantum similarity measures as descriptors for quantum QSAR. Polycycl Aromat Compd 19:51–71

    Google Scholar 

  30. Renners I, Ludwig LA, Grauel A, Benfenati E, Pellagatti S, Robert D, Carbó-Dorca R, Girones X (2000) Modeling toxicity with molecular descriptors and similarity measures via B-spline networks. IPMU2000 8th international conference on information processing and management of uncertainty in knowledge based systems, Madrid, Spain, pp 1021–1026

    Google Scholar 

  31. Renners I, Carbó-Dorca R, Grauel A, Ludwig LA, Robert D, Girones X (2000) Toxicity prediction by using genetically optimized B-spline networks based on molecular quantum similarity. 2nd international ICSC symposium on neural computation, Berlin, Germany

    Google Scholar 

  32. Gallegos A, Robert D, Girones X, Carbó-Dorca R (2001) Structure-toxicity relationships of polycyclic aromatic hydrocarbons using molecular quantum similarity. J Comput Aided Mol Design 15:67–80

    Google Scholar 

  33. Besalú E, Gallegos A, Carbó-Dorca R (2001) Topological quantum similarity indices and their use in QSAR: Application to several families of antimalarial compounds. Match-Commun Math Comput Chem 44:41–64

    Google Scholar 

  34. Gironés X, Carbó-Dorca R (2001) Sobre les relacions lineals d'energia lliure: Mesures de Semblança Molecular Quàntica sobre Funcions de Densitat Electrònica Modificades. Scientia Gerund 25:5–15

    Google Scholar 

  35. Ponec R, Gironés X, Carbó-Dorca R (2002) Molecular basis of LFER. On the nature of inductive effects in aliphatic series. J Chem Inf Comput Sci 42:564–570

    Google Scholar 

  36. Gironés X, Gallegos A, Carbó-Dorca R (2001) Antimalarial activity of synthetic 1,2,4-trioxabes and cyclid peroxy ketals, a quantum similarity study. J Comput-Aided Mol Design 15:1053–1063

    Google Scholar 

  37. Gironés X, Carbó-Dorca R (2002) Molecular quantum similarity-based QSARs for binding affinities of several steroid sets. J Chem Inf Comput Sci 42:1185–1193

    Google Scholar 

  38. Gallegos Saliner AG, Amat L, Carbó-Dorca R, Schultz TW, Cronin MTD (2003) Molecular quantum similarity analysis of estrogenic activity. J Chem Inf Comput Sci 43:1166–1176

    Google Scholar 

  39. Amat L, Carbó-Dorca R, Cooper DL, Allan NL, Ponec R (2003) Structure-property relationships andmomentum-space quantities:Hammett s-constants. Mol Phys 101:3159–3162

    Google Scholar 

  40. Gironés X, Carbó-Dorca R, Ponec R (2003) Molecular basis of LFER. Modeling of the electronic substituent effect using fragment quantum self-similarity measures. J Chem Inf Comput Sci 43:2033–2038

    Google Scholar 

  41. Nino A, Munoz-Caro C, Carbó-Dorca R, Gironés X (2003) Rational modelling of the voltage-dependent K+ channel inactivation by aminopyridines. Biophys Chem 104:417–427

    Google Scholar 

  42. Gallegos A, Carbó-Dorca R, Ponec R, Waisser K (2004) Similarity approach to QSAR. Application to antimycobacterial benzoxazines. Int J Pharm 269:51–60

    Google Scholar 

  43. Gironés X, Carbó-Dorca R (2004) Molecular similarity and quantitative structure-activity relationships. In: Bultinck P, De Winter H, Langenaecker W, Tollenaere JP (eds) Similarity and quantitative structure-activity relationships in computational medicinal chemistry for drug discovery. Marcel Dekker, New York, pp 365–385

    Google Scholar 

  44. Giralt F, Espinosa G, Arenas A, Ferre-Gine J, Amat L, Gironés X, Carbó-Dorca R, Cohen Y (2004) Estimation of infinite dilution activity coefficients of organic compounds in Water with neural classifiers. AIChE J 50:1315–1343

    Google Scholar 

  45. Carbó-Dorca R, Gironés X (2005) Foundation of quantum similarity measures and their relationship to QSPR: Density function structure, approximations and application examples. Int J Quantum Chem 101:8–20

    Google Scholar 

  46. Gironés X, Carbó-Dorca R (2006) Modelling toxicity using molecular quantum similarity measures. QSAR Comb Sci 25:579–589

    Google Scholar 

  47. Myers H (1990) Classical and modern regression with applications. Duxbury Press, California

    Google Scholar 

  48. Wold S, Sjöström M, Eriksson L (1994) Partial least squares projections to latent structures (PLS) in chemistry. In: von Ragué Schleyer P, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Screiner PR (eds) Encyclopedia of computational chemistry. Wiley, Chichester, pp 2006–2021

    Google Scholar 

  49. Geladi P, Kowalski BR (1986) Partial least-squares regression: A tutorial. Analytica Chimica Acta 185:1–17

    Google Scholar 

  50. Wold S, Johansson E, Cocchi M (1993) PLS-partial least-squares projections to latent structures. In: Kubinyi H (ed) 3D QSAR in drug design. ESCOM, Science Publishers BV, Leiden, chap 5

    Google Scholar 

  51. Montgomery DC, Peck EA, Vining GG (1992) Introduction to linear regression analysis. Wiley, New York

    MATH  Google Scholar 

  52. Whitley DC, Ford MG, Livingstone DJ (2000) J Chem Inf Comput Sci 40:1160–1168

    Google Scholar 

  53. Wold S (1978) Cross-validatory estimation of the number of components in factor and principal component models. Technometrics 20:397–405

    MATH  Google Scholar 

  54. Jolliffe IT (1986) Principal component analysis. Springer, New York

    Google Scholar 

  55. Cattell RB (1966) The scree test for the number of factors. Multivar Behav Res 1:245–276

    Google Scholar 

  56. Wold S, Eriksson L (1995) Statistical validation of QSAR results. In: Van de Waterbeemd H (ed) Chemometric methods in molecular design. VCH, New York, sect IV, pp 309–318

    Google Scholar 

  57. Allen DM (1974) The relationship between variable selection and data augmentation and a method for prediction. Technometrics 16:125–127

    MathSciNet  MATH  Google Scholar 

  58. Shao J (1993) Linear-Model selection by cross-validation. J Am Stat Assoc 88:486–494

    MATH  Google Scholar 

  59. Carbó-Dorca R (2000) Stochastic transformation of quantum similarity matrices and their use in quantum QSAR models. Int J Quantum Chem 79:163–177

    Google Scholar 

  60. Carbó-Dorca R (2007) About the prediction of molecular properties using the fundamental quantum QSPR (QQSPR) equation. SAR QSAR Environ Res 18:265–284

    Google Scholar 

  61. Carbó-Dorca R, Van Damme S (2007) Theoretical chemistry accounts: Theory, computation, and modeling. Theoretica Chimica Acta 118:673–679

    Google Scholar 

  62. Carbó-Dorca R, Van Damme S (2007) Riemann spaces, molecular density function semispaces, quantum similarity measures and quantum quantitative structure-properties relationships (QQSPR). Afinidad 64:147–153

    Google Scholar 

  63. Hansch C, Fujita T (1962) J Am Chem Soc 86:10

    Google Scholar 

  64. Oliva JM, Carbó-Dorca R, Mestres J (1996) Conformational analysis from the point of view of quantum molecular similarity. In: Carbó-Dorca R, Mezey PG (eds) Advances in molecular similarity. JAI PRESS, London, pp 135–165

    Google Scholar 

  65. Carbó-Dorca R (2000) Quantum quantitative structure-activity relationships (QQSAR): A comprehensive discussion based on inward matrix products, employed as a tool to find approximate solutions of strictly positive linear systems and providings QSAR-quantum similarity measures connection. In: Proc of the european congress on computational methods in applied sciences and engineering (ECCOMAS 2000), Barcelona, chap 12

    Google Scholar 

  66. Sen K, Carbó-Dorca R (2000) Inward matrix products, generalised density functions and Rayleigh–Schrödinger perturbation Theory. J Mol Struct Theochem 501:173–176

    Google Scholar 

  67. Carbó-Dorca R (2001) Inward matrix product algebra and calculus as tools to construct space-time frames of arbitrary dimensions. J Math Chem 30:227–245

    Google Scholar 

  68. Carbó-Dorca R (2003) Applications of inward matrix products and matrix wave functions to Hückel MO theory, Slater extended wave functions, spin extended functions and Hartree method. Int J Quantum Chem 91:607–617

    Google Scholar 

  69. Carbó-Dorca R (2003) About some questions relative to the arbitrariness of signs: Their possible consequences in matrix signatures definition and quantum chemical applications. J Math Chem 33:227–244

    Google Scholar 

  70. Vinogradov IM (1989) Encyclopaedia of mathematics, vol 4. Kluwer Academic, Dordrecht, p 351

    Google Scholar 

  71. Lahey Computer Systems (1998) LF 95 Language Reference. Lahey Computer Systems, Incline Village http://www.lahey.com

  72. Carbó-Dorca R (2002) Shell partition and metric semispaces: Minkowski norms, root scalar products, distances and cosines of arbitrary order. J Math Chem 32:201–223

    Google Scholar 

  73. Bultinck P, Carbó-Dorca R (2004) A mathematical discussion on density and shape functions, vector semispaces and related questions. J Math Chem 36:191–200

    Google Scholar 

  74. Vinogradov IM (1992) Encyclopaedia of mathematics, vol 8. Kluwer Academic, Dordrecht, p 249

    Google Scholar 

  75. Constans P, Amat LL, Fradera X, Carbó-Dorca R (1996) Quantum molecular similarity measures (QMSM) and the atomic shell approximation (ASA). In: Carbó-Dorca R, Mezey PG (eds) Advances in molecular similarity, vol 1. JAI Press, London, chap 8, pp 187–211

    Google Scholar 

  76. Gironés X, Amat L, Carbó-Dorca R (1998) A comparative study of isodensity surfaces using ab initio and ASA density functions. J Mol Graph Model 16:190–196

    Google Scholar 

  77. Constants P, Carbó R (1995) Atomic shell approximation: Electron density fitting algorithm restricting coefficients to positive values. J Chem Inf Comput Sci 35:1046–1053

    Google Scholar 

  78. Amat LL, Carbó-Dorca R (1997) Quantum similarity measures under atomic shell approximation: First order density fitting using elementaryJacobi rotations. J Comput Chem 18:2023–2039

    Google Scholar 

  79. Amat LL, Carbó-Dorca R (1999) Fitted electronic density functions from H to Rn for use in quantum similarity measures: Cis-diamminedichloroplatinum(II) complex as an application example. J Comput Chem 20:911–920

    Google Scholar 

  80. Amat LL, Carbó-Dorca R (2000) Molecular electronic density fitting using elementary Jacoby rotations under atomic shell approximation (ASA). J Chem Inf Comput Sci 40:1188–1198

    Google Scholar 

  81. Gironés X, Carbó-Dorca R, Mezey PG (2001) Application of promolecular ASA densities to graphical representation of density functions of macromolecular systems. J Mol Graph Model 19:343–348

    Google Scholar 

  82. Mestres J, Solà M, Besalú E, Duran M, Carbó R (1995) Electron density approximations for the fast evaluation of quantum molecular similarity measures. In: Carbó R (ed) Molecular similarity and reactivity: From quantum chemical to phenomenological approaches. Kluwer Academic, Dordrecht, pp 77–85

    Google Scholar 

  83. Mestres J, Solà M, Duran M, Carbó R (1995) General suggestions and applications of quantum molecular similarity measures from ab initio fitted electron densities. In: Carbó R (ed) Molecular similarity and reactivity: From quantum chemical to phenomenological approaches. Kluwer Academic, Dordrecht, pp 89–111

    Google Scholar 

  84. Carbó R, Calabuig B (1990) Molecular similarity and quantum chemistry. In: Johnson MA, Maggiora GM (eds) Concepts and applications of molecular similarity. Wiley, New York, chapt 6, p 147

    Google Scholar 

  85. Carbó R, Besalú E, Amat LL, Fradera X (1996) On Quantum Molecular Similarity Measures (QMSM) and Indices (QMSI). J Math Chem 19:47–56

    Google Scholar 

  86. Robert D, Carbó-Dorca R (2000) General trends in atomic and nuclear quantum similarity measures. Int J Quantum Chem 77:685–692

    Google Scholar 

  87. Besalú E, Carbó-Dorca R, Karwowski J (2001) Generalized one-electron spin functions and Self-Similarity Measures. J Math Chem 29:41–45

    Google Scholar 

  88. Amat L, Besalú E, Carbó-Dorca R (2001) Identification of active molecular sites using quantum-self similarity measures. J Chem Inf Comput Sci 41:978–991

    Google Scholar 

  89. Besalú E, Gironés X, Amat L, Carbó-Dorca R (2002) Molecular quantum similarity and the fundaments of QSAR. Acc Chem Res 35:289–295

    Google Scholar 

  90. Amat L, Carbó-Dorca R, Cooper DL, Allan NL (2003) Classification of reaction pathways via momentum-space and quantum molecularsimilarity measures. Chem Phys Lett 367:207–213

    Google Scholar 

  91. Bultinck P, Carbó-Dorca R (2003) Molecular quantum similarity matrix based clustering of molecules using dendrograms. J Chem Inf Comput Sci 43:170–177

    Google Scholar 

  92. Ponec R, Bultinck P, Van Damme S, Carbó-Dorca R, Tantillo DJ (2005) Geometric and electronic similarities between transition structures for electrocyclizations and sigmatropic hydrogen shifts. Theor Chem Acc 113:205–211

    Google Scholar 

  93. Bultinck P, Carbó-Dorca R (2005) Molecular quantum similarity using conceptual DFT descriptors. J Chem Sci 117:425–435

    Google Scholar 

  94. Carbó-Dorca R (2008) A quantum similarity matrix (QSM) Aufbau procedure. J Math Chem 44:228–234

    Google Scholar 

  95. Berberian SK (1961) Introduction to Hilbert space. Oxford University Press, New York

    MATH  Google Scholar 

  96. Carbó R, Besalú E (1992) Many center AO integral evaluation using cartesian exponential type orbitals (CETO's). Adv Quantum Chem 24:115–237

    Google Scholar 

  97. von Neumann J (1955) Mathematical foundations of quantum mechanics. Princeton University Press, Princeton

    MATH  Google Scholar 

  98. Born M (1945) Atomic physics. Blackie and Son, London

    Google Scholar 

  99. Dirac PAM (1983) The principles of quantum mechanics. Clarendon Press, Oxford

    Google Scholar 

  100. Carbó-Dorca R (2000) Quantum QSAR and the eignsystems of stochastic quantum similarity matrices. J Math Chem 27:357–376

    Google Scholar 

  101. Gironés X, Amat L, Carbó-Dorca R (2000) Use of electron-electron repulsion energy as a molecular description in QSAR or QSPR studies. J Comput Aided Mol Design 14:477–485

    Google Scholar 

  102. Kubinyi H (1993) 3D QSAR in drug design. Theory, methods and applications. ESCOM Science Publishers, Leiden

    Google Scholar 

  103. Martin YC (1978) Quantitative drug design. Medicinal research series, vol 8. Marcel Dekker, New York

    Google Scholar 

  104. Lien EJ (1987) SAR, side effects and drug design. Medicinal research series, vol 11. Marcel Dekker, New York

    Google Scholar 

  105. Martin YC, Kutter E, Austel V (1989) Modern drug research. Medicinal research series, vol 12. Marcel Dekker, New York

    Google Scholar 

  106. Wermuth CG (1993) Trends in QSAR molecular modelling 92. Escom, Leiden

    Google Scholar 

  107. Kubinyi H (1998) Quantitative structure-activity relationships in drug design. In: Schleyer PVR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) Encyclopedia of computational chemistry, vol 4. Wiley, Chichester, pp 2309–2319

    Google Scholar 

  108. Charton M (1996) Advances in quantitative structure-property relationships, vol 1. JAI Press, London

    Google Scholar 

  109. Van de Waterbeemd H (1996) Structure-property correlations in drug research. Academic Press, San Diego

    Google Scholar 

  110. Jurs PC (1998) Quantitative structure-property relationships (QSPR). In: Schleyer PVR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) Encyclopedia of computational chemistry, vol 4. Wiley, Chichester, pp 2320–2330

    Google Scholar 

  111. Boethling RS, Mackay D (2000) Handbook of property estimation methods for chemicals. Environmental and health sciences. Lewis Publishers, London

    Google Scholar 

  112. Neter J, Wasserman W, Kutner MH (1990) Applied linear statistical models. RD Irwin, Boston

    Google Scholar 

  113. Wagner M, Sadowski J, Gasteiger J (1995) Autocorrelation of molecular surface properties for modeling corticosteroid binding globulin and cytosolic Ah receptor activity by neural networks. J Am Chem Soc 117:7769–7775

    Google Scholar 

  114. Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids tocarrier proteins. J Am Chem Soc 110:5959–5967

    Google Scholar 

  115. Parretti MF, Kroemer RT, Rothman JH, Richards WG (1997) Alignment of molecules by Monte Carlo optimisation and molecular similarity indices. J Comput Chem 18:1344–1353

    Google Scholar 

  116. So SS, Karplus M (1997) Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 1. Method and validations. J Med Chem 40:4347–4359

    Google Scholar 

  117. Jain AN, Koile K, Chapman D (1994) Compass: Predicting biological activities from molecular surface properties. Performance comparisons on a steroid benchmark. J Med Chem 37:2315–2327

    Google Scholar 

  118. Bravi G, Gancia E, Mascagni P, Pegna M, Todeschini R, Zaliani A (1997) MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties: A comparative 3D QSAR study in a series of steroids. J Comput Aided Mol Design 11:79–92

    ADS  Google Scholar 

  119. Norinder U (1990) Experimental design based 3D-QSAR analysis of steroid-protein interactions: Application to human CBG complexes. J Comput Aided Mol Design 4:381–389

    ADS  Google Scholar 

  120. Norinder U (1991) 3D-QSAR analysis of steroid/protein interactions: The use of difference maps. J Comput Aided Mol Design 5:419–426

    ADS  Google Scholar 

  121. Rum G, Herndon WC (1991) Molecular similarity concepts. 5. Analysis of steroid-protein binding constants. J Am Chem Soc 113:9055–9060

    Google Scholar 

  122. Simon Z, Bohl M (1992) Structure-activity relations in gestagenic steroids by the MTD method. The case of hard molecules and soft receptors. Quant Struct Activity Relatsh 11:23–28

    Google Scholar 

  123. Waszkowycz B, Clark DE, Frenkel D, Li J, Murray CW, Robson B, Westhead DR (1994) PRO_LIGAND: An approach to de novo molecular design. 2. Design of novel molecules from molecular field analysis (MFA) models and pharmacophores. J Med Chem 37:3994–4002

    Google Scholar 

  124. Dunn WJ, Wold S, Edlund U, Hellberg S (1984) Multivariate structure-activity relationships between data from a battery of biological tests and an ensemble of structure descriptors: the PLS method. Quant Struct Activity Relatsh 3:131–137

    Google Scholar 

  125. Good AC, So SS, Richards WG (1993) Structure-activity relationships from molecular similarity matrices. J Med Chem 36:433–438

    Google Scholar 

  126. Oprea TI, Ciubotariu D, Sulea TI, Simon Z (1993) Comparison of the minimal steric difference (MTD) and comparative molecular field analysis (CoMFA) methods for analysis of binding of steroids to carrier proteins. Quant Struct Activity Relatsh 12:21–26

    Google Scholar 

  127. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Google Scholar 

  128. Hahn M, Rogers D (1995) Receptor Surface Models. 2. Application to quantitative structure-activity relationships studies. J Med Chem 38:2091–2102

    Google Scholar 

  129. Silverman BD, Platt DE (1996) Comparative molecular moment analysis (CoMMA): 3D-QSAR without molecular superposition. J Med Chem 39:2129–2140

    Google Scholar 

  130. Kellogg GE, Kier LB, Gaillard P, Hall LH (1996) E-state fields: Applications to 3D QSAR. J Comput Aided MolDesign 10:513–520

    Google Scholar 

  131. Anzali S, Barnickel G, Krug M, Sadowski J, Wagener M, Gasteiger J, Polanski J (1996) The comparison of geometric and electronic properties of molecular surfaces by neural networks: Application to the analysis of corticosteroid-binding globulin activity of steroids. J Comput Aided Mol Design 10:521–534

    ADS  Google Scholar 

  132. Norinder U (1996) 3D-QSAR Investigation of the tripos benchmark steroids and some protein-tyrosene kinase inhibitors of styrene type using the TDQ approach. J Chemom 10:533–545

    Google Scholar 

  133. Schnitker J, Gopalaswamy R, Crippen GM (1997) Objective models for steroid binding sites of human globulins. J Comput Aided Mol Design 11:93–110

    ADS  Google Scholar 

  134. Turner DB, Willett P, Ferguson AM, Heritage T (1997) Evaluation of a novel infrared range vibration-based descriptor (EVA) for QSAR studies. 1. General application. J Comput Aided Mol Design 11:409–422

    ADS  Google Scholar 

  135. Cramer RD III, Depriest SA, Patterson DE, Hecht P (1993) The developing practice of comparative molecular field analysis. In: Kubinyi H (ed) 3D QSAR in drug design. ESCOM, Leiden, part III, pp 443–485

    Google Scholar 

  136. Good AC (1995) 3D molecular similarity indices and their application in QSAR studies. In: Dean PM (ed) Molecular similarity in drug design. Blackie Academic & Professional (Capman & Hall), London, chap 2

    Google Scholar 

  137. Ortiz AR, Pisabarro MT, Gago F, Wade RC (1995) Prediction of drug binding affinities by comparative binding energy analysis: Application to human synovial fluid phospholipase A2 inhibitiors. In: Sanz F, Giraldo J, Manaut F (eds) QSAR and molecular modelling: Concepts, computational tools and biological applications. Prous Pub, Barcelona, sect VII, pp 439–443

    Google Scholar 

  138. Oprea TI, Head RD, Marshall GR (1995) The basis of cross-reactivity for a series of steroids binding to monoclonal antibody (DB3) against progesterone. A molecular modeling and QSAR study. In: Sanz F, Giraldo J, Manaut F (eds) QSAR and molecular modelling: Concepts, computational tools and biological applications. Prous Pub, Barcelona, sect VII, pp 461–462

    Google Scholar 

  139. Kimura T, Hasegawa K, Funatsu K (1998) GA strategy for variable selection in QSAR studies: GA-based region selection for CoMFA modeling. Chem Inf Comput Sci 38:276–282

    Google Scholar 

  140. Mabilia M, Belvisi L, Bravi G, Catalano G, Scolastico C (1995) A PCA/PLS analysis on nonpeptide angiotensin II receptor antagonists. In: Sanz F, Giraldo J, Manaut F (eds) QSAR and molecular modelling: Concepts, computational tools and biological applications. Prous Pub,Barcelona, sect VII, pp 456–460

    Google Scholar 

  141. Sulea T, Oprea T, Muresan S, Ling Chan S (1997) A different method for steric field evaluation in CoMFA improves model robustness. Chem Inf Comput Sci 37:1162–1170

    Google Scholar 

  142. Palomer A, Giolitti A, García ML, Fos E, Cabré F, Mauleón D, Carganico G (1995) Molecular modeling and CoMFA investigations on LTD4 receptor antagonists. In: Sanz F, Giraldo J, Manaut F (eds) QSAR and molecular modelling: Concepts, computational tools and biological applications. Prous Pub, Barcelona, sect VII, pp 444–450

    Google Scholar 

  143. Tetko IV, Villa AEP, Livingstone DJ (1996) Neural network studies. 2. variable selection. Chem Inf ComputSci 36:794–803

    Google Scholar 

  144. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Google Scholar 

  145. Richon AB, Young SS (2008) An introduction to QSAR methodology. A web paper of the network science corporation: http://www.netsci.org/Science/Compchem/feature19.html. Accessed 27 Oct 2008

  146. So SS, van Helden SP, van Geerestein VJ, Karplus M (2000) Quantitative structure-activity relationship studies of progesterone receptor binding steroids. Chem Inf Comput Sci 40:762–772

    Google Scholar 

  147. Gantmacher F R (1966) Théorie des matrices, vol 2. Dunod, Paris

    MATH  Google Scholar 

  148. Jacobi CGJ (1846) J Reine Angew Math 30:51–94

    MATH  Google Scholar 

  149. Carbó-Dorca R, Besalú E, Gironés X (2000) Extended density functions. Adv Quantum Chem 38:3–63

    Google Scholar 

  150. Eyring H, Walter J, Kimball GE (1944) Quantum chemistry. Wiley, New York

    Google Scholar 

  151. Hoffmann K (1988) Banach spaces and analytic functions. Dover Publications, New York

    Google Scholar 

  152. Akhiezer NI, Glazman IM (1993) Theory of linear operators in Hilbert space. Dover Publications, New York

    MATH  Google Scholar 

  153. Landau LD, Lifshitz EM (1967) Mecánica Cuántica No-Relativista. Editorial Reverté, Barcelona

    Google Scholar 

  154. Vinogradov IM (1992) Encyclopaedia of mathematics, vol 8. Reidel-Kluwer Academic, Dordrecht, pp 379

    Google Scholar 

  155. Stewart J (1991) Advanced General Relativity. Cambridge University Press, Cambridge

    Google Scholar 

  156. Bach A, Amat L, Besalú E, Carbó-Dorca R, Ponec R (2000) Quantum chemistry, Sobolev spaces and SCF. J Math Chem 28:59–70

    Google Scholar 

  157. Carbó-Dorca R (2002) Density functions and generating wave functions. In: Sen K (ed) Reviews in modern quantum chemistry, vol I, 15, pp 401–412

    Google Scholar 

  158. Edwards CH Jr (1994) Advanced calculus of several variables. Dover Publications, New York

    Google Scholar 

  159. Carbó R, Besalú E (1996) Applications of nested summation symbols to quantum chemistry: Formalism and programming techniques. In: Ellinger Y, Defranceschi M (eds) Strategies and applications in quantum chemistry. Kluwer Academic, Dordrecht, pp 229

    Google Scholar 

  160. Carbó R, Besalú E (1995) Definition and quantum chemical applications of nested summation symbols and logical functions: Pedagogical artificial intelligence devices for formulae writing, sequential programming and automatic parallel implementation. J Math Chem 18:37–72

    Google Scholar 

  161. BreitTG; Phys. Revs. 34 (1929) 553–573; Ibid. 36 (1930) 383–397; Ibid. 39 (1932) 616–624

    Google Scholar 

  162. Bethe HA, Salpeter EE (1957) Quantum mechanics of one- and two-electron systems. Springer, Berlin

    Google Scholar 

  163. Moss RE (1973) Advanced molecular quantum mechanics. Chapman and Hall, London

    Google Scholar 

  164. Carbó-Dorca R, Karwowski J (2001) Theoretical and computational aspects of extended wave functions. Int J Quantum Chem 84:331–337

    Google Scholar 

  165. McWeeny R, Sutcliffe BT (1969) Methods of molecular quantum mechanics. Academic Press, London

    Google Scholar 

  166. Huzinaga S (1991) Theochem 234:51–73

    Google Scholar 

  167. Huzinaga S, Katsuki S, Matsuoka O (1992) J Math Chem 10:25–39

    Google Scholar 

  168. Bonifacic V, Huzinaga S (1974) J Chem Phys 60:2779–2786

    ADS  Google Scholar 

  169. Carbó R, Calabuig B (1992) Molecular quantum similarity measures and n-dimensional representation of quantum objectsI. theoretical foundations. Int J Quantum Chem 42:1681–1709

    Google Scholar 

  170. Carbó-Dorca R, Besalú E (1996) Extending molecular similarity to electronic energy surfaces: Boltzmann similarity measures and indices. J Math Chem 20:247–261

    Google Scholar 

  171. Bultinck P, De Winter H, Langenaecker W, Tollenaere JP (2004) Similarity and quantitative structure-activity relationships in computational medicinal chemistry for drug discovery. Marcel Dekker, New York

    Google Scholar 

  172. Vinogradov IM (1988) Encyclopaedia of mathematics, vol 1. Reidel-Kluwer Academic, Dordrecht, p 334

    Google Scholar 

  173. Korn GA, Korn TM (1967) Manual of mathematics. Mc Graw-Hill, New York

    MATH  Google Scholar 

  174. Stewart J (1999) Cálculo. International Thompson Editores, México

    Google Scholar 

  175. Carbó R, Besalú E (1993) J Math Chem 13:331–342

    Google Scholar 

  176. Carbó R, Besalú E (1994) Comput Chem 18:117–126

    Google Scholar 

  177. Carbó-Dorca R (2000) A discussion on an apparent MO theory paradox. J Math Chem 27:35–41

    Google Scholar 

  178. Fraga S, García de la Vega JM, Fraga ES (1999) The Schrödinger and Riccati equations. Lecture notes in chemistry, vol 70. Springer, Berlin

    Google Scholar 

  179. Meyer CD (2000) Matrix analysis and applied linear algebra. SIAM, Philadelphia

    MATH  Google Scholar 

  180. Amat LL, Carbó-Dorca R, Ponec R (1999) Simple linear QSAR models based on quantum similarity measures. J Med Chem 42:5169–5170

    Google Scholar 

  181. Besalú E, Carbó R, Mestres J, Solà M (1995) In: Sen K (ed) Molecular similarity I. Top Curr Chem 173:31

    Google Scholar 

  182. Hansch C, Fujita T (1964) J Am Chem Soc 86:5175

    Google Scholar 

  183. Amat LL, Carbó-Dorca R, Ponec R (1998) Molecular quantum similarity studies as an alternative to log P values in QSAR studies. J Comput Chem 14:1575–1583

    Google Scholar 

  184. Carbó R, Besalú E (1994) Comput Chem 18:117

    Google Scholar 

Books and Reviews

  1. Al-Fahemi J, Cooper DL, Allan NL (2005) The quantitative use of momentum-space descriptors. Chem Phys Lett 416:376–380

    Google Scholar 

  2. Al-Fahemi J, Cooper DL, Allan NL (2005) The use of momentum-space descriptors for predicting octanol-water partition coefficients. J Mol Struct Theochem 727:57–61

    Google Scholar 

  3. Allan NL, Cooper DL (1995) Topics Curr Chem 173:85–111

    Google Scholar 

  4. Amat LL, Carbó-Dorca R (2002) Use of promolecular ASA density functions as a general algorithm to obtain starting MO in SCF calculations. Int J Quantum Chem 87:59–67

    Google Scholar 

  5. Amat LL, Besalú E, Carbó R, Fradera X (1995) Practical applications of quantum molecular similarity measures (QMSM): Programs and examples. Scientia Gerund 21:17–34

    Google Scholar 

  6. Amat LL, Constans P, Carbó R (1996) Descripció d'un algorisme d'optimització global de les Mesures de Semblança Quàntica Molecular. Scientia Gerund 22:109–121

    Google Scholar 

  7. Amat LL, Pradera X, Carbó R (1996) Sobre els mapes de Semblança Quàntica Molecular. Scientia Gerund 22:97–107

    Google Scholar 

  8. Amat LL, Robert D, Besalú E, Carbó–Dorca R (1998) Molecular quantum similarity measures tuned QSAR: An antitumoral family validation study. J Chem Inf Comput Sci 38:624–631

    Google Scholar 

  9. Amovilli C, McWeeny R (1991) J Mol Struct Theochem 227:1–9

    Google Scholar 

  10. Antolín J, Angulo JC (2008) Quantum similarity indices for atomic ionization processes. Eur Phys J D 46:21–26

    Google Scholar 

  11. Atkins PW, Friedman RS (1997) Molecular quantum mechanics. Oxford University Press, Oxford

    Google Scholar 

  12. Bach A, Carbó-Dorca R (1999) Aplicació de la Semblança Molecular Quàntica en la reducció de l'espai configuracional per a l'estat fonamental i primers exitats de l'àtom d'heli. Scientia Gerund 24:183–196

    Google Scholar 

  13. Bader RFW (1990) Atoms in molecules. Clarendon Press, Oxford

    Google Scholar 

  14. Bell JS (1993) Speakable and unspeakable in quantum mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  15. Benigni R, Cotta-Ramusino M, Giorgi F, Gallo G (1995) J Med Chem 38:629–635

    Google Scholar 

  16. Benigni R, Cotta-Rasmusino M, Gallo G, Giorgi F, Giuliani A, Vari MR (2000) J Med Chem 43:3699–3707

    Google Scholar 

  17. Besalú E (2001) Fast computation of cross-validated properties in full linear leave-many-out procedures. J MathChem 29:191–204

    Google Scholar 

  18. Besalú E, Carbó R (1995) Quantum similarity topological indices: Definition, analysis and comparison with classical molecular topological indices. Scientia Gerund 21:145–152

    Google Scholar 

  19. Besalú E, Amat L, Fradera X, Carbó R (1995) An application of the molecular quantum similarity: Ordering of some properties of the hexanes. In: QSAR and molecular modelling: Concepts, computational tools and biological applications. Proc of the 10th european symposium on structure-activity relationships. Prous Science, Barcelona, pp 396–399

    Google Scholar 

  20. Besalú E, Carbó R, Mestres J, Solà M (1995) Foundations and recent developments of quantum molecular similarity. In: Topics in current chemistry: Molecular similarity I, vol 173. Springer, Berlin, pp 31–62

    Google Scholar 

  21. Besalú E, Carbó R, Duran M, Mestres J (1995) MESSEM: A density-based quantum molecular similarity system of programs. In: Clementi E (ed) Methods and techniques in computational chemistry METECC-95. STEF, Cagliari, pp 491–508

    Google Scholar 

  22. Bethe HA, Jackiw R (1986) Intermediate quantum mechanics. Benjamin, Menlo Park

    Google Scholar 

  23. Bonaccorsi R, Scrocco E, Tomasi J (1970) J Chem Phys 52:5270–5284

    ADS  Google Scholar 

  24. Boon G, Van Alsenoy C, De Proft F, Bultinck P, Geerlings P (2005) Molecular quantum similarity of enantiomers of amino acids: a case study. J Mol Struct Theochem 727:49–56

    Google Scholar 

  25. Borgoo A, Godefroid M, Sen KD, De Proft F, Geerlings P (2004) Quantum similarity of atoms: A numerical Hartree–Fock and information theory approach. Chem Phys Lett 399:363–367

    ADS  Google Scholar 

  26. Borgoo A, Torrent-Sucarrat M, De Proft F, Geerlings P (2007) Quantum similarity study of atoms: A bridge between hardness and similarity indices. J Chem Phys 126:234104

    Google Scholar 

  27. Born M (1944) Atomic physics. Blackie & Son, London

    Google Scholar 

  28. Botella V, Pacios LF (1998) Analytic atomic electron densities in molecular se If-similarity measures and electrostatic potentials. J Mol Struct Theochem 426:75–85

    Google Scholar 

  29. Bultinck P, Carbó-Dorca R, Van Alsenoy C (2003) Quality of approximate electron densities and internal consistency of molecular alignment algorithms in molecular quantum similarity. J Chem Inf Comput Sci 43:1208–1217

    Google Scholar 

  30. Bultinck P, Rafat M, Ponec R, Van Gheluwe B, Carbó-Dorca R, Popelier P (2006) Coulomb and overlap self-similarities: A comparative selectivity analysis of structure- electron delocalization and aromaticity in linear polyacenes: Atoms in molecules multicenter delocalization ind. J Phys Chem A 110:7642–7648

    Google Scholar 

  31. Bultinck P, Ponec R, Gallegos A, Fias S, Van Damme S, Carbó-Dorca R (2006) Generalized Polansky index as an aromaticity measure in polycyclic aromatic hydrocarbons. Croatica Chemica Acta 79: 363–371

    Google Scholar 

  32. Bunge M (1979) Causality in modern science. Dover, New York

    Google Scholar 

  33. BurtC, Richards WG, Huxley PH (1990) J Comput Chem 11:1139–1146

    Google Scholar 

  34. Carbó R (1995) Molecular similarity and reactivity: From quantum chemical to phenomenological approaches. Understanding chemical reactivity, vol 14. Kluwer Academic, Dordrecht

    Google Scholar 

  35. CarbóR, Besalú E (1995) Theoretical Foundations of Quantum Molecular Similarity. In: Carbó R (ed) Molecular similarity and reactivity: From quantum chemistry to phenomenological approaches. Kluwer Academic, Dordrecht, pp 3–30

    Google Scholar 

  36. Carbó R, Calabuig B (1989) Molsimil-88: Molecular similarity calculations using a CNDO approximation. Comput Phys Commun 55:117

    Google Scholar 

  37. Carbó R, Calabuig B (1989) Sobre las Medidas de Semejanza Molecular: Una conexión entre Química Quántica e Inteligencia Artificial. Una contribucion a los Anales de la VI Escuela Latinoamericana de Química Teórica, Brasil, vol 1, pp 134

    Google Scholar 

  38. Carbó R, Calabuig B (1992) Molecular quantum similarity measures and n-dimensional representation of quantum objects II. Practical applications. Int J Quantum Chem 42:1695

    Google Scholar 

  39. Carbó R, Calabuig B (1992) Quantum molecular similarity measures and the n-dimensional representation of a molecular set:Phenyldimethylthiazines. J Mol Struct Theochem 254:517–531

    Google Scholar 

  40. Carbó R, Calabuig B (1992) Quantum similarity measures, molecular cloud description and structure-properties relationships. J Chem Inf Comput Sci 32:600–606

    Google Scholar 

  41. Carbó R, Calabuig B (1992) Quantum similarity: Definitions, computational details and applications. In: Fraga S (ed) Computational chemistry: Structure, interactions and reactivity. Elsevier, Amsterdam, pp 300–324

    Google Scholar 

  42. Carbó R, Domingo LL (1987) LCAO MO similarity measures and taxonomy. Int J Quantum Chem 32:517–545

    Google Scholar 

  43. Carbó R, Riera JM (1978) A general SCF theory. Lecture notes in chemistry, vol 5. Springer, Berlin

    Google Scholar 

  44. Carbó R, Martín M, Pons V (1977) Application of quantum mechanical parameters in quantitative structure-activity relationships, Afinidad 34:348–353

    Google Scholar 

  45. Carbó R, Suñé E, Lapeña F, Pérez J (1986) Electrostatic potential comparison and molecular metric spaces. J Biol Phys 14:21

    Google Scholar 

  46. Carbó R, Lapeña F, Suñé E (1986) Similarity measures on electrostatic molecular potentials. Afinidad 43:483

    Google Scholar 

  47. Carbó R, Calabuig B, Martínez A (1991) Semblança molecular: Representació n-dimensional d'un conjunt de molècules. Scientia Gerund 17:133

    Google Scholar 

  48. Carbó R, Molino L, Calabuig B, Besalú E, Martínez A (1992) Medidas de Semejanza Cuántica: Conceptos Clásicos y Nuevas Estrategias. Folia Chimica Theoretica Latina 21–45

    Google Scholar 

  49. Carbó-Dorca R (1998) On the statistical interpretation of density functions: ASA, convex sets, discrete quantum chemical molecular representations, diagonal vector spaces and related problems. J Math Chem 23:365–375

    Google Scholar 

  50. Carbó-Dorca R (2000) Quantum QSAR and the eigensystems of stochastic quantum similarity matrices. J Math Chem 27:357–376

    Google Scholar 

  51. Carbó-Dorca R (2004) Heisenberg's relations in discrete n-dimensional parameterized metric vector spaces. J Math Chem 36:41–54

    Google Scholar 

  52. Carbó-Dorca R (2004) Infinite-dimensional time vectors as background building blocks of a space-time frame structure. J Math Chem 36:75–81

    Google Scholar 

  53. Carbó-Dorca R (2005) Molecular nuclear fields: A naïve perspective. J Math Chem 38:671–676

    Google Scholar 

  54. Carbó-Dorca R (2004) Non-linear terms & variational approach in quantum QSPR. J Math Chem 36:241–260

    Google Scholar 

  55. Carbó-Dorca R (2006) Descriptors and probability distributions in MO theory: Weighted Mulliken matrices and molecular quantum similarity measures. J Math Chem 39:551–591

    Google Scholar 

  56. Carbó-Dorca R (2008) Mathematical aspects of the LCAO MO first order density function (1): Atomic partition, metric structure and practical applications. J Math Chem 43:1076–1101

    Google Scholar 

  57. Carbó-Dorca R (2008) Mathematical aspects of the LCAO MO first order density function (2): Relationships between density functions. J Math Chem 43:1102–1118

    Google Scholar 

  58. Carbó-Dorca R, Besalú E (2006) Generation of molecular fields, quantum similarity measures and related questions. J Math Chem 39:495–509

    Google Scholar 

  59. Carbó-Dorca R, Bultinck P (2004) A general procedure to obtain quantum mechanical charge and bond order molecular parameters. J Math Chem 36(3):201–210

    Google Scholar 

  60. Carbó-Dorca R, Bultinck P (2004) Quantum mechanical basis for Mulliken population analysis. J Math Chem 36:231–239

    Google Scholar 

  61. Carbó-Dorca R, Bultinck P (2008) Mathematical aspects of the LCAO MO first order density function (3): A general localization procedure. J Math Chem 43:1069–1075

    Google Scholar 

  62. Chaves J, Barroso J, Bultinck P, Carbó-Dorca R (2006) Toward an alternative hardness kernel matrix structure in theelectronegativity equalization method (EEM). J Chem InfModel 46:1657–1665

    Google Scholar 

  63. CioslowskiJ, Challacombe M (1991) Int J Quantum Chem S25:81–93

    Google Scholar 

  64. Cioslowski J, Fleishmann ED (1991) J Am Chem Soc 113:64–67

    Google Scholar 

  65. Cioslowski J, Mixon ST (1992) Can J Chem 70:443–449

    Google Scholar 

  66. CioslowskiJ, Nanayakkara A (1993) J Am Chem Soc 115:11213–11215

    Google Scholar 

  67. Cioslowski J, Stefanov BB, Constans P (1996) J Comput Chem 17:1352–1358

    Google Scholar 

  68. Constans P, Amat L, Carbó-Dorca R (1997) Towards a global maximization of the molecular similarity function: The superposition of two molecules. J Comput Chem 18:826–846

    Google Scholar 

  69. Cooper DL, Allan NL (1989) J Comput Aided Mol Design 3:253–259

    ADS  Google Scholar 

  70. Cooper DL, Allan NL (1992) J Am Chem Soc 114:4773–4776

    Google Scholar 

  71. Cooper DL, Mort KA, Allan NL, Kinchington D, McGuidan CH (1993) J Am Chem Soc 115:12615–12616

    Google Scholar 

  72. Davidson ER (1976) Reduced density matrices in quantum chemistry. Academic Press, New York

    Google Scholar 

  73. Davydov AS (1965) Quantum mechanics. Pergamon Press, New York

    Google Scholar 

  74. Dean PM (1995) Molecular similarity in drug design. Blackie Academic & Professional, London

    Google Scholar 

  75. Dedekind R (1963) Essays on the theory of numbers. Dover, New York

    MATH  Google Scholar 

  76. Dunn JF, Nisula BC, Rodbard D (1981) J Clin Endocrinol Metab 53:58–68

    Google Scholar 

  77. Eyring H, Walker J, Kimball GE (1948) Quantum chemistry. Wiley, New York

    Google Scholar 

  78. Ferro N, Gallegos A, Bultinck P, Jacobsen HJ, Carbó-Dorca R, Reinard T (2006) Coulomb and overlap self-similarities: A comparative selectivity analysis of structure-function relationships for Auxin-like molecules. J Chem Inf Model 46:1751–1762

    Google Scholar 

  79. Ferro N, Bultinck P, Gallegos A, Jacobsen HJ, Carbó-Dorca R, Reinard T (2007) Unrevealed structural requrements for auxin-like molecules by theoretical and experimental evidences. Phytochemistry 68:237–250

    Google Scholar 

  80. Fradera X, Amat LL, Besalú E, Carbó-Dorca R (1997) Application of molecular quantum similarity to QSAR. Quant Struct Activity Relatsh 16:25–32

    Google Scholar 

  81. Fratev F, Monev V, Mehlhorn A, Polansky OE (1979) J Mol Struct 56:255–266

    ADS  Google Scholar 

  82. Fratev F, Polansky OE, Mehlhorn A, Monev V (1979) J Mol Struct 56:245–253

    ADS  Google Scholar 

  83. Gallegos A (2006) Mini-review on chemical similarity and prediction of toxicity. Curr Comput Aided Drug Des 2:105–122

    Google Scholar 

  84. Gallegos A, Girones X (2005) Theoretical Background and QSPR Application. J Chem Inf Model 45:321–326

    Google Scholar 

  85. Gallegos A, Girones X (2005) Topological quantum similarity measures: Applications in QSAR. J Mol Struct Theochem 727:97–106

    Google Scholar 

  86. Gallegos A, Patlewicz G, Worth AP (2005) The use of similarity measures in defining the applicability domain of skin sensitisation SARs. Altex-Alternativen zu Tierexperimenten 22:272

    Google Scholar 

  87. Gallegos A, Netzeva TI, Worth AP (2006) Prediction of estrogenicity: Validation of a classification model. SAR QSAR Environ Res 17:195–223

    Google Scholar 

  88. Gallegos A, Tsakovska I, Pavan M, Patlewicz G, Worth A (2007) Evaluation of SARs for the prediction of skin irritation/corrosion potential-structural inclusion rules in the BfR decision support system. SAR QSAR Environ Res 18:331–342

    Google Scholar 

  89. Gallegos A, Patlewicz G, Worth AP (2008) A review of (Q)SAR models for skin and eye irritation and corrosion. QSAR and Combinatorial Sciences 27:49–59

    Google Scholar 

  90. Geerlings P, De Proft F (2002) Chemical reactivity as described by quantum chemical methods. Int J Mol Sci 3:276–309

    Google Scholar 

  91. Geerlings P, Boon G, Van Alsenoy C, De Proft F (2005) Density functional theory and quantum similarity. Int J Quantum Chem 101:722–732

    Google Scholar 

  92. Gironés X, Amat L, Carbó-Dorca R (1999) Using molecular quantum similarity measures as descriptors in quantitative structure-toxicity relationships. SAR QSAR Environ Res 10:545–556

    Google Scholar 

  93. Gironés X, Robert R, Carbó-Dorca R (2001) TGSA: A molecular superposition program based on topo-geometrical considerations. J Comput Chem 22:255–263

    Google Scholar 

  94. Gironés X, Amat L, Carbó-Dorca R (2002) Modeling large macromolecular structures using promolecular densities. J Chem Inf Comput Sci 42:847–852

    Google Scholar 

  95. Gironés X, Carbó-Dorca R (2004) TGSA-Flex: Extending the capabilities of the topo-geometrical superposition algorithm to handle rotary bonds. J Comput Chem 25:153–159

    Google Scholar 

  96. Goldstein S (1988) Physics Today, March, 42 and April, 38

    Google Scholar 

  97. Good AC (1992) J Mol Graph 10:144–151

    Google Scholar 

  98. Good AC, Richards WG (1993) J Chem Inf Comput Sci 33:112–116

    Google Scholar 

  99. Good AC, Hodgkin EE, Richards WG (1992) J Chem Inf Comput Sci 32:188–191

    Google Scholar 

  100. Greiner W (1997) Relativistic quantum mechanics. Springer, Berlin

    MATH  Google Scholar 

  101. Gruber PM, Wills JM (1993) Handbook of convex geometry. North-Holland, Amsterdam

    Google Scholar 

  102. HoM, Smith VH, Weaver DF, Gatti C (1998) J Chem Phys 108:5469–5475

    Google Scholar 

  103. Hodgkin EE, Richards WG (1987) Int J Quantum Chem 14 :105–110

    Google Scholar 

  104. HuzinagaS, Klobukowski M (1998) J Mol Struct Theochem 167:1–209

    Google Scholar 

  105. Jeffrey A (1995) Handbook of mathematical formulas and integrals. Academic Press, New York

    Google Scholar 

  106. Klein J, Babic D (1997) Chem Inf Comput Sci 37:656

    Google Scholar 

  107. Lee CH, Smithline SH (1994) J Phys Chem 98:1135–1138

    Google Scholar 

  108. Leherte L (2006) Similarity measures based on Gaussian-type promolecular electron density models: Alignment of small rigid molecules. J Comput Chem 27:1800–1816

    Google Scholar 

  109. Lobato M, Besalú E, Carbó R (1996) Relacions Estructura-Propietat per un conjunt d'hidrucarburs a partir de nous descriptors tridimensionals derivats de la Semblança Molecular. Scientia Gerund 22:79–86

    Google Scholar 

  110. Lobato M, Amat L, Besalú E, Carbó-Dorca R (1997) Structure-activity relationships of a steroid family using quantum similarity measures and topological quantum similarity indices. Quant Struct Activity Relatsh 16:465–472

    Google Scholar 

  111. Lobato M, Amat L, Besalú E, Carbó-Dorca R (1998) Estudi QSAR d'una família de quinolones utilitzant indexs de semblança i indexs topològics de semblance. Scientia Gerund 23:17–27

    Google Scholar 

  112. Ludeña EV (1987) In: Fraga S (ed) Química Teórica, Nuevas Tendencias, vol 4. CSIC, Madrid, pp 117–160

    Google Scholar 

  113. Löwdin PO (1955) Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configuration interaction. Phys Rev 97:1474–1489

    Google Scholar 

  114. Löwdin PO (1955) Quantum theory of many-particle systems. II. Study of the ordinary hartree-fock approximation. Phys Rev 97:1490–1508

    Google Scholar 

  115. Löwdin PO (1955) Quantum theory of many-particle systems. III. Extension of the Hartree–Fock scheme to include degenerate systems and correlation effects. Phys Rev 97:1509–1520

    Google Scholar 

  116. March NH (1992) Electron density theory of atoms and molecules. Academic Press, London

    Google Scholar 

  117. Mc Weeny R (1959) Proc Roy Soc A 253:242–259

    MathSciNet  ADS  Google Scholar 

  118. Mc Weeny R (1960) Some recent advances in density matrix theory. Rev Mod Phys 32:335–369

    MathSciNet  ADS  Google Scholar 

  119. Mc Weeny R (1978) Methods of molecular quantum mechanics. Academic Press, London

    Google Scholar 

  120. Mestres J, Solà M, Duran M, Carbó R (1994) On the calculation of ab initio quantum molecular similarities for large systems. J Comput Chem 15:1113–1120

    Google Scholar 

  121. Mestres J, Solà M, Duran M, Carbó R (1994) On the use of ab initio quantum molecular similarities as an interpretative tool for the studyof chemical reactions. J Am Chem Soc 116:5909–5915

    Google Scholar 

  122. Mestres J, Solà M, Carbó R (1995) First-order molecular descriptors for molecular steric similarity. Scientia Gerund 21:165–173

    Google Scholar 

  123. Mestres J, Solà M, Carbó R, Luque FJ, Orozco M (1996) Effect of solvation on the charge distribution of a series of anionic, neutral, and cationic species. A quantum molecular similarity study. J Phys Chem 100:606–610

    Google Scholar 

  124. Mezey PG (1993) Shape in chemistry: An introduction to molecular shape and topology. VCH, New York

    Google Scholar 

  125. Mezey PG (1995) Molecular similarity I. In: Sen K (ed) Topics in current chemistry, vol 173. Springer, Berlin, pp 63–83

    Google Scholar 

  126. Mezey PG (1998) Averaged electron densities for averaged conformations. J Comput Chem 19:1337–1344

    Google Scholar 

  127. Mezey PG (2005) Graph representations of molecular similarity measures based on topological resolution. J Comput Methods Sci Eng 5:109–114

    MATH  Google Scholar 

  128. Mezey PG, Ponec R, Amat L, Carbó-Dorca R (1999) Quantum similarity approach to the characterization of molecular chirality. Enantiomers 4:371–378

    Google Scholar 

  129. Myers RH (1990) Classical and modern regression with applications. PWS-KENT Publishing company, Boston

    Google Scholar 

  130. Netzeva TI, Gallegos A, Worth AP (2006) Topological quantum similarity indices based on fitted densities: Comparison of the applicability domain of a QSAR for estrogenicity with a large chemical inventory. Environ Toxicol Chem 25:1223–1230

    Google Scholar 

  131. Ortiz JB, Cioslowski J (1991) Chem Phys Lett 185:270–275

    ADS  Google Scholar 

  132. Paniagua JC, Alemany P (1999–2000) Química Quàntica. Vols 1 and 2, Barcelona, 1999–2000

    Google Scholar 

  133. Parr RG (1963) The quantum theory of molecular electronic structure. WA Benjamin, New York

    MATH  Google Scholar 

  134. Patlewicz G, Jeliazkova N, Gallegos Saliner A, Worth AP (2008) Toxmatch – A new software tool to aid in the development and evaluation of chemically similar groups. SAR QSAR Environ Res 19:397–412

    Google Scholar 

  135. Pauling L, Wilson EB Jr (1985) Introduction to Quantum mechanics. Dover, New York

    Google Scholar 

  136. Petke JD (1993) J Comput Chem 14:928–933

    Google Scholar 

  137. Pierre DA (1969) Optimization theory with applications. Wiley, New York

    MATH  Google Scholar 

  138. Pilar FL (1990) Elementary quantum chemistry. McGraw-Hill, Princeton

    Google Scholar 

  139. Pla L (1986) Análisis Multivariado: Método de Componentes Principales Monography no 27. Secretaría General de la OEA, Washington,

    Google Scholar 

  140. Ponec R (1993) J Chem Inf Comput Sci 33:805–811

    Google Scholar 

  141. Ponec R (1995) Overlap determinant method in the theory of pericyclic reactions. Lecture notes in chemistry, vol 65. Springer, Berlin

    Google Scholar 

  142. Ponec R, Strnad M (1990) Collect Czechoslov Chem Commun 55:2583–2589

    Google Scholar 

  143. Ponec R, Strnad M (1990) Collect Czechoslov Chem Commun 55:896–902

    Google Scholar 

  144. Ponec R, Strnad M (1991) J Math Chem 8:103–112

    MathSciNet  Google Scholar 

  145. Ponec R, Strnad M (1991) J Phys Organic Chem 4:701–705

    Google Scholar 

  146. Ponec R, Strnad M (1992) Int J Quantum Chem 42:501–508

    Google Scholar 

  147. Ponec R, Amat LL, Carbó-Dorca R (1999) Molecular basis of quantitative structure-properties relationships (QSPR): A quantum similarity approach. J Comput Aided Mol Design 13:259–270

    Google Scholar 

  148. Ponec R, Amat LL, Carbó-Dorca R (1999) Quantum similarity approach to LFER: Substituent and solvent effects on the acidities of carboxylic acids. J Phys Organic Chem 12:447–454

    Google Scholar 

  149. Riera A (1992) J Mol Struct Theochem 259:83–98

    Google Scholar 

  150. Robert D, Carbó-Dorca R (1998) A formal comparison between molecular quantum similarity measures and indices. J Chem Inf Comput Sci 38:469–475

    Google Scholar 

  151. Robert D, Carbó-Dorca R (1998) Analyzing the triple density molecular quantum similarity measures with the INDSCAL model. J Chem Inf Comput Sci 38:620–623

    Google Scholar 

  152. Robert D, Carbó-Dorca R (1998) On the extension of QS to atomic nuclei: Nuclear QS. J Math Chem 23:327–351

    Google Scholar 

  153. Robert D, Carbó-Dorca R (1998) Structure-property relationships in nuclei. Prediction of the binding energy per nucleon usinga quantum similarity approach. Il Nuovo Cimento A111:1311–1321

    Google Scholar 

  154. Robert D, Amat LL, Carbó-Dorca R (1999) Three-dimensional quantitative structure-activity relationships from tuned molecular quantum similarity measures. Prediction of the corticosteroid-binding globulin binding affinity for a steroid family. Chem Inf Comput Sci 39:333–344

    Google Scholar 

  155. Safouhi H (2005) Analytical and numerical development for the two-centre overlap-like quantum similarity integrals over Slater-type functions. J Phys A: Mathematical and General 38:7341–7361

    MathSciNet  ADS  Google Scholar 

  156. Sen K (1995) Molecular similarity. Topics in current chemistry. vols 173, 174. Springer, Berlin

    Google Scholar 

  157. Shavitt I (1977) In: Schaefer HF III (ed) Methods of electronic structure theory. Modern theoretical chemistry, vol 3. Plenum Press, New York, pp 189–275

    Google Scholar 

  158. Sobolev SL (1938) Math Sb 4:471

    MATH  Google Scholar 

  159. Solà M, Mestres J, Duran M, Carbó R (1994) Ab initio quantum molecular similarity measures on metal-substituted carbonic anhydrase (M (II) CA, M=Be, Mg, Mn, Co, Ni, Cu, Zn, and Cd). J Chem Inf Comput Sci 34:1047–1053

    Google Scholar 

  160. Solà M, Mestres J, Carbó R, Duran M (1996) A Comparative analysis by means of Quantum Molecular Similarity Measures of Density Distributions derived from conventional ab initio and Density Functional Methods. J Chem Phys 104:636–647

    Google Scholar 

  161. Solà M, Mestres J, Oliva JM, Duran M, Carbó C (1996) The use of ab initio quantum molecular selfsimilarity measures to analyze electronic charge density distributions. Int J Quantum Chem 58:361–372

    Google Scholar 

  162. Spiegel MR (1968) Mathematical handbook. McGraw-Hill, New York

    Google Scholar 

  163. Stoer J, Witzgall CH (1970) Convexity and optimization in finite dimensions. Die Grundlehren der matematischen Wissenschaften in Einzeldarstellungen, Band 163. Springer, Berlin

    Google Scholar 

  164. Trillas E, Alsina C, Terricabras JM (1995) Introducción a la Lógica Difusa. Ariel Matemática, Barcelona

    Google Scholar 

  165. Tsakovska I, Gallegos A, Netzeva T, Pavan M, Worth AP (2007) Evaluation of SARs for the prediction of eye irritation/corrosion potential-structural inclusion rules in the BfR decision support system. SAR QSAR Environ Res 18:221–235

    Google Scholar 

  166. Vinogradov IM (1989) Encyclopaedia of Mathematics, vol 4. Kluwer Academic, Dordrecht, pp 422–428

    Google Scholar 

  167. Vracko M, Bandelj V, Barbieri P, Benfenati E, Chaudhry Q, Cronin M, Devillers J, Gallegos A, Gini G, Gramatica P, Helma C, Neagu D, Netzeva T, Pavan M, Patlewicz G, Randic M, Tsakovska I, Worth A (2006) Validation of counter propagation neural network models for predictive toxicology according to the OECD principles. A Case Study. SAR QSAR Environ Res 17:265–284

    Google Scholar 

  168. Wagener M, Sadowski J, Gasteiger J (1995) J Am Chem Soc 117:7769–7775

    Google Scholar 

  169. Whitley DC, Ford MG, Livingstone DJ (2000) Unsupervised forward selection: A method for eliminating redundant variables. Chem Inf Comput Sci 40:1160–1168

    Google Scholar 

  170. Wilkinson JH (1965) The algebraic eigenvalue problem. Clarendon Press, Oxford

    MATH  Google Scholar 

  171. Wilkinson JH, Reinsch C (1971) Linear álgebra. Springer, Berlin

    MATH  Google Scholar 

  172. Worth AP, Bassan A, de Bruijn J, Gallegos A, Netzeva T, Patlewicz G, Pavan M, Tsakovska I, Eisenreich E (2007) The role of the european chemicals bureau in promoting the regulatory use of (Q)SAR methods. SAR QSAR Environ Res 18:111–125

    Google Scholar 

  173. Zadeh LA (1965) Inform Control 8:338

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Carbó-Dorca, R., Gallegos, A. (2009). Quantum Similarity and Quantum Quantitative Structure-Properties Relationships (QQSPR). In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_440

Download citation

Publish with us

Policies and ethics