Skip to main content

Approximating treewidth, pathwidth, and minimum elimination tree height

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 570))

Abstract

We show how the value of various parameters of graphs connected to sparse matrix factorization and other applications can be approximated using an algorithm of Leighton et al. that finds vertex separators of graphs. The approximate values of the parameters, which include minimum front size, treewidth, pathwidth, and minimum elimination tree height, are no more than O(log n) (minimum front size and treewidth) and O(log2 n) (pathwidth and minimum elimination tree height) times the optimal values. In addition we examine the existence of bounded approximation algorithms for the parameters, and show that unless P = NP, there are no absolute approximation algorithms for them.

The research of this author is partially supported by the ESPRIT II Basic Research Actions of the EC under Contract No. 3075 (project ALCOM).

The research of this author is supported by the Foundation for Computer Science (S.I.O.N.) of the Netherlands Organization for Scientific Research (N.W.O.) and by the ESPRIT II Basic Research Actions of the EC under Contract No. 3075 (project ALCOM).

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Arnborg, D. G. Corneil, A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM Journal of Algebraic and Discrete Methods, 8:277–284, 1987.

    Google Scholar 

  2. S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs, J. of Algorithms, 12:308–340, 1991.

    Google Scholar 

  3. S. Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey. BIT, 25:2–23, 1985.

    Google Scholar 

  4. H. L. Bodlaender. Polynomial algorithms for Graph Isomorphism and Chromatic Index on partial k-trees. J. Algorithms, 11:631–644, 1990.

    Google Scholar 

  5. H. L. Bodlaender and T. Kloks. Better algorithms for the pathwidth and treewidth of graphs. Proc. 18th ICALP, pages 544–555. Springer Verlag, Lect. Notes in Comp. Sc. 510, 1991.

    Google Scholar 

  6. H. L. Bodlaender and R. H. Möhring. The pathwidth and treewidth of cographs. In Proc. 2nd Scandinavian Workshop on Algorithm Theory, pages 301–309. Springer Verlag Lect. Notes in Computer Science vol. 447, 1990.

    Google Scholar 

  7. N. Deo, M. S. Krishnamoorty and M. A. Langston. Exact and approximate solutions for the gate matrix layout problem. IEEE Transactions on Computer-Aided Design, 6:79–84, 1987.

    Google Scholar 

  8. J.R. Egan and C.L. Liu. Bipartite folding and partitioning of a PLA, IEEE Trans. CAD, 3:191–199, 1984.

    Google Scholar 

  9. I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear equations. ACM Transactions on Mathematical Software, 9:302–325, 1983.

    Google Scholar 

  10. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, 1979.

    Google Scholar 

  11. J. A. George. Nested dissection of a regular finite element mesh. SIAM Journal of Numerical Analysis, 10:345–363, 1973.

    Google Scholar 

  12. J. R. Gilbert. Some nested dissection order is nearly optimal. Information Processing Letters, 6:325–328, 1987/88.

    Google Scholar 

  13. F. Harary. Graph Theory, Addison-Wesley, 1969.

    Google Scholar 

  14. P. Klein, A. Agrawal, R. Ravi, and S. Rao. Approximation through multicommodity flow. In Proceedings of the 31th Annual Symposium on Foundations of Computer Science, IEEE, pages 726–737, 1990.

    Google Scholar 

  15. D. König. Theorie der Graphen, Reprinted by Chelsea Publishing Company, New York, 1950.

    Google Scholar 

  16. J. Lagergren. Efficient parallel algorithms for tree-decomposition and related problems. In Proceedings of the 31th Annual Symposium on Foundations of Computer Science, IEEE, pages 173–182, 1990.

    Google Scholar 

  17. J. van Leeuwen. Graph Algorithms. In Handbook of Theoretical Computer Science. A: Algorithms and Complexity Theory, North Holland, Amsterdam, 1990.

    Google Scholar 

  18. F. T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximate algorithms. In Proceedings of the 29th Annual Symposium on Foundations of Computer Science, IEEE pages 422–431, 1988.

    Google Scholar 

  19. F. T. Leighton. Personal communication, 1990.

    Google Scholar 

  20. C. E. Leiserson and J. G. Lewis. Orderings for parallel sparse symmetric factorization. An unpublished manuscript, 1988.

    Google Scholar 

  21. R. J. Lipton, D. J. Rose and R. E. Tarjan. Generalized nested dissection. SIAM Journal of Numerical Analysis 16:346–358, 1979.

    Google Scholar 

  22. J. W. H. Liu. The multifrontal method for sparse matrix solution: theory and practice. Tech. Report CS-90-04, York University, North York, Ontario, Canada. To appear.

    Google Scholar 

  23. R. H. Möhring. Graph problems related to gate matrix layout and PLA folding. In Computing Supplementum 7 (G. Tinhofer et al, eds), page 17–51. Springer-Verlag, Vienna, 1990.

    Google Scholar 

  24. A. Pothen. The complexity of optimal elimination trees. Tech. Report CS-88-16, Pennsylvania State University, 1988.

    Google Scholar 

  25. N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms, 7:309–322, 1986.

    Article  Google Scholar 

  26. N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem. Manuscript, 1986.

    Google Scholar 

  27. N. Robertson and P. D. Seymour. Graph minors. X. Obstructions to tree-decompositions. To appear in J. Combinatorial Theory, Ser. B., 1991.

    Google Scholar 

  28. D.J. Rose, R.E. Tarjan and G.S. Lueker. Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. Vol. 5, No. 2, 266–283, 1976.

    Article  Google Scholar 

  29. P.D. Seymour and R. Thomas. Call Routing and the Ratcatcher. Manuscript, 1991.

    Google Scholar 

  30. M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Journal of Algebraic and Discrete Methods, 2:77–79, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gunther Schmidt Rudolf Berghammer

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T. (1992). Approximating treewidth, pathwidth, and minimum elimination tree height. In: Schmidt, G., Berghammer, R. (eds) Graph-Theoretic Concepts in Computer Science. WG 1991. Lecture Notes in Computer Science, vol 570. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55121-2_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-55121-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55121-8

  • Online ISBN: 978-3-540-46735-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics