Skip to main content

Memorizing Visual Knowledge for Assembly Process Monitoring

  • Conference paper
  • First Online:
Pattern Recognition (DAGM 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2191))

Included in the following conference series:

  • 1156 Accesses

Abstract

Machine learning is a desirable property of computer vision systems. Especially in process monitoring knowledge of temporal context speeds up recognition. Moreover, memorizing earlier results allows to establish qualitative relations between the stages of a processes. In this contribution we present an architecture that learns different visual aspects of assemblies. It is organized hierarchically and stores prototypical data from different levels of image processing and object recognition. An example underlines that this memory facilitates assembly recognition and recognizes structural relations among complex objects.

This work has been supported by the DFG within SFB 360.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Bauckhage, J. Fritsch, and G. Sagerer. Erkennung von Aggregaten aus Struktur und Handlung. Künstliche Intelligenz, 3:4–11, 1999.

    Google Scholar 

  2. C. Bauckhage, S. Kronenberg, F. Kummert, and G. Sagerer. Grammars and Discourse Theory to Describe and Recognize Mechanical Assemblies. In Advances in Pattern Recognition, Lecture Notes in Computer Science 1876, pages 173–182. Springer-Verlag, 2000.

    Chapter  Google Scholar 

  3. C. Bauckhage, F. Kummert, and G. Sagerer. Learning Assembly Sequence Plans Using Functional Models. In Proc. IEEE International Symposium on Assembly and Task Planning (ISATP’99), pages 1–7, 1999.

    Google Scholar 

  4. N. Esau and L. Steinborn. Konzeption und Realisierung eines Aggregatged ächtnisses zur Analyse von Konstruktionsprozessen. Dipl. Arbeit, Universität Bielefeld, Feb. 2001. available at: http://www.TechFak.Uni-Bielefeld.DE/techfak/ ags/ai/publications/master-theses/Esau Steinborm2001.ps.gz.

  5. K. Fries, J. Meyer, B. Lindemann, and H. Hagen. Correspondence Analysis: The Matching of 3-Dimensional Sets of Points. In Proc. Vision, Modelling, and Visualization 2000, pages 399–406. infix, 2000.

    Google Scholar 

  6. K.W. Khawaja, A.A. Maciejewski, D. Tretter, and C. Bouman. A Multiscale Assembly Inspection Algorithm. IEEE Robotics ℰ Automation Magazine, 3(2):15–22, 1996.

    Article  Google Scholar 

  7. F. Kummert, G.A. Fink, and G. Sagerer. Schritthaltende hybride Objektdetektion. In E. Paulus and F.M. Wahl, editors, Mustererkennung 97, 19. DAGM-Symposium Braunschweig, Informatik-Fachberichte, pages 137–144. Springer-Verlag, 1997.

    Google Scholar 

  8. C. L. Liu. Elements of Discrtete Mathematics. McGraw-Hill, 1977.

    Google Scholar 

  9. J.E. Lloyd, J.S. Beis, D.K. Pai, and D.G. Lowe. Programming Contact Tasks Using a Reality-Based Virtual Environment Integrated with Vision. IEEE Transactions on Robotics and Automation, 15(3):423–434, 1999.

    Article  Google Scholar 

  10. B. Luo and E.R. Hancock. Alignment and Correspondence Using Singular Value Decomposition. In Advances in Pattern Recognition, Lecture Notes in Computer Science 1876, pages 226–235. Springer-Verlag, 2000.

    Chapter  Google Scholar 

  11. J. Miura and K. Ikeuchi. Task Oriented Generation of Visual Sensing Strategies in Assembly Tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(2):126–138, 1998.

    Article  Google Scholar 

  12. B.J. Nelson, N.P. Papanikolopoulos, and P.K. Khosla. Robotic Visual Servoing and Robotic Assembly Tasks. IEEE Robotics ℰ Automation Magazine, 3(2):23–31, 1996.

    Article  Google Scholar 

  13. J.A. Noble. From inspection to process understanding and monitoring: a view on computer vision in manufacturing. Image and Vision Computing, 13(3):197–214, 1995.

    Article  MathSciNet  Google Scholar 

  14. B. Parhami. Voting Algorithms. IEEE Transactions on Reliability, 43(4):617–629, 1994.

    Article  Google Scholar 

  15. C.-P. Tung and A.C. Kak. Integrating Sensing, Task Planning and Execution for Robotic Assembly. IEEE Transactions on Robotics and Automation, 12:187–201, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bauckhage, C., Fritsch, J., Sagerer, G. (2001). Memorizing Visual Knowledge for Assembly Process Monitoring. In: Radig, B., Florczyk, S. (eds) Pattern Recognition. DAGM 2001. Lecture Notes in Computer Science, vol 2191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45404-7_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-45404-7_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42596-0

  • Online ISBN: 978-3-540-45404-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics