Skip to main content

Accurate Numerical Fourier Transform in d-Dimensions

  • Conference paper
  • First Online:
  • 532 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2630))

Abstract

The classical method of numerically computing Fourier transforms of digitized functions in one or in d-dimensions is the so-called Discrete Fourier Transform (DFT) efficiently implemented as Fast Fourier Transform (FFT) algorithms. In many cases, the DFT is not an adequate approximation of the continuous Fourier transform. Because the DFT is periodical, spectrum aliasing may occur. The method presented in this contribution provides accurate approximations of the continuous Fourier transform with similar time complexity. The assumption of signal periodicity is no longer posed and allows to compute numerical Fourier transforms in a broader domain of frequency than the usual half-period of the DFT. The aliasing introduced by periodicity can be reduced to a negligible level even with a relatively low number of sampled data points. In addition, this method yields accurate numerical derivatives of any order and polynomial splines of any odd order with their optimum boundary conditions. The numerical error on results is easily estimated. The method is developed in one and in d-dimensions and numerical examples are presented.

Normand Beaudoin is a post-doctoral fellow at the Department of Computer Science, Middlesex College, University of Western Ontario, London, Canada, N6A 5B7. Phone: (519) 661-2111.

Steven S. Beauchemin is with the Department of Computer Science, Middlesex College, University of Western Ontario, London, Canada, N6A 5B7. Phone: (519) 661-2111.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brigham, E. O. (1974): The Fast Fourier Transform. Prentice-Hall

    Google Scholar 

  2. Morrison, N. (1994): Introduction to Fourier Analysis. Wiley-Interscience

    Google Scholar 

  3. Marchildon, L. (2000): Mécanique Quantique. De Boeck Université

    Google Scholar 

  4. Kittel, C. (1983): Physique de l’ État Solide. Dunod Université

    Google Scholar 

  5. Shapiro, L. G., Stockman G. C. (2001): Computer Vision. Prentice Hall

    Google Scholar 

  6. Schutte J. (1981): New Fast Fourier Transform Algorithm for Linear System Analysis Applied in Molecular Beam Relaxation Spectroscopy. Rev. Sci. Instrum., 52(3), 400–404

    Article  Google Scholar 

  7. Makinen S. (1982): New Algorithm for the Calculation of the Fourier Transform of Discrete Signals. Rev. Sci. Instrum., 53(5), 627–630

    Article  Google Scholar 

  8. Sorella S., Ghosh S. K. (1984): Improved Method for the Discrete Fast Fourier Transform. Rev. Sci. Instrum., 55(8), 1348–1352

    Article  Google Scholar 

  9. Froeyen M., Hellemans L. (1985): Improved Algorithm for the Discrete Fourier Transform. Rev. Sci. Instrum., 56(12), 2325–2327

    Article  Google Scholar 

  10. Gaskill, J. D. (1974): Linear Systems, Fourier Transform, and Optics. Prentice-Hall

    Google Scholar 

  11. Beaudoin, N. (1999): PhD. Thesis. Université du Québec à Trois-Rivières. Canada

    Google Scholar 

  12. Butkov, E. (1968): Mathematical Physics. Addison-Wesley Reading

    Google Scholar 

  13. Kreyszig, E. (1983): Advanced Engineering Mathematics. Wiley

    Google Scholar 

  14. Beaudoin N. (1998): A High-accuracy Mathematical and Numerical Method for Fourier Transform, Integral, Derivative, and Polynomial Splines of any Order. Canadian Journal of Physics, 76(9), 659–677

    Article  Google Scholar 

  15. Gerald C. F., Wheatley P. O. (1989): Applied Numerical Analysis. Addison-Wesley Reading

    Google Scholar 

  16. Ventsel H. (1973): Théorie des Probabilités. Editions Mir

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beaudoin, N., Beauchemin, S.S. (2003). Accurate Numerical Fourier Transform in d-Dimensions. In: Winkler, F., Langer, U. (eds) Symbolic and Numerical Scientific Computation. SNSC 2001. Lecture Notes in Computer Science, vol 2630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45084-X_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-45084-X_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40554-2

  • Online ISBN: 978-3-540-45084-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics