Skip to main content

Limiting Partial Combinatory Algebras towards Infinitary Lambda-Calculi and Classical Logic

  • Conference paper
  • First Online:
Book cover Computer Science Logic (CSL 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2142))

Included in the following conference series:

Abstract

We will construct from every partial combinatory algebra (pca, for short) A a pca a-lim(A) s.t. (1) every representable numeric function ϕ(n) of a-lim(A) is exactly of the form limt ξ(t, n) with ξ(t, n) being a representable numeric function of A, and (2) A can be embedded into a-lim(A) which has a synchronous application operator. Here, a-lim(A) is A equipped with a limit structure in the sense that each element of a-lim(A) is the limit of a countable sequence of A-elements. We will discuss limit structures for A in terms of Barendregt’s range property. Moreover, we will repeat the construction lim(−) transfinite times to interpret infinitary λ-calculi. Finally, we will interpret affine type-free λµ-calculus by introducing another partial applicative structure which has an asynchronous application operator and allows a parallel limit operation. keywords: partial combinatory algebra, limiting recursive functions, realizability interpretation, discontinuity, infinitary lambda-calculi, λµ-calculus. In the interpretation, µ-variables(=continuations) are interpreted as streams of λ-terms.

The author acknowledges Susumu Hayashi, Mariko Yasugi, Stefano Berardi, and Ken-etsu Fujita. The comment by anonymous referees was useful to partly improve the presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.P. Barendregt. The Lambda Calculus. 1984.

    Google Scholar 

  2. S. Berardi. Classical logic as limit completion I&II, submitted, 2001.

    Google Scholar 

  3. A. Berarducci. Infinite λ-calculus and non-sensible models. In Logic and algebra (Pontignano, 1994), pp. 339–377. Dekker, New York, 1996.

    Google Scholar 

  4. K. Fujita. On proof terms and embeddings of classical substructural logics. Studia Logica, 61(2):199–221, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Mark Gold. Limiting recursion. JSL, 30:28–48, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Hayashi and M. Nakata. Towards limit computable mathematics. In TYPES2000, LNCS. Springer, 2001.

    Google Scholar 

  7. S. Hayashi, R. Sumitomo, and K. Shii. Towards animation of proofs-testing proofs by examples-. TCS, 2001. to appear.

    Google Scholar 

  8. J.R. Kennaway, J.W. Klop, M.R. Sleep, and F.J. de Vries. Infinitary lambda calculus. TCS, 175(1):93–125, 1997.

    Article  MATH  Google Scholar 

  9. M. Nakata and S. Hayashi. Limiting first order realizability interpretation. Sci. Math. Japonicae, 2001. to appear.

    Google Scholar 

  10. M. Parigot. λµ-calculus: an algorithmic interpretation of classical natural deduction. In Logic programming and automated reasoning. Springer, 1992.

    Google Scholar 

  11. H. Schwichtenberg and S. S. Wainer. Infinite terms and recursion in higher types. In J. Diller and G. H. Müller, eds., =ISILC Proof Theory Symposion, pp. 341–364. LNM., Vol. 500, 1975. Springer.

    Google Scholar 

  12. R. I. Soare. Recursively Enumerable Sets and Degrees Springer, 1987.

    Google Scholar 

  13. Th. Streicher and B. Reus. Classical logic, continuation semantics and abstract machines. J. Funct. Programming, 8(6):543–572, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  14. H.R. Strong. Algebraically generalized recursive function theory. IBM Journal of Research and Development, 12:465–475, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  15. W.W. Tait. Infinitely long terms of transfinite type. In Crossley and Dummet, eds., Formal Systems and Recursive Functions, pp. 176–185. North-Holland, 1965.

    Google Scholar 

  16. A. S. Troelstra and D. van Dalen. Constructivism in Mathematics, 1988.

    Google Scholar 

  17. E. G. Wagner. Uniformly reflexive structures: On the nature of Gödelizations and relative computability. Trans. of the Amer. Math. Soc., 144:1–41, 1969.

    Article  Google Scholar 

  18. M. Yasugi, V. Brattka, and M. Washihara. Computability aspects of some discontinuous functions. http://www.kyoto-su.ac.jp/~yasugi/Recent/gaussnew.ps, 2001.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Akama, Y. (2001). Limiting Partial Combinatory Algebras towards Infinitary Lambda-Calculi and Classical Logic. In: Fribourg, L. (eds) Computer Science Logic. CSL 2001. Lecture Notes in Computer Science, vol 2142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44802-0_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-44802-0_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42554-0

  • Online ISBN: 978-3-540-44802-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics