Skip to main content

Role of the Cerebellum in Time-Critical Goal-Oriented Behaviour: Anatomical Basis and Control Principle

  • Chapter
  • First Online:
Book cover Emergent Neural Computational Architectures Based on Neuroscience

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2036))

  • 703 Accesses

Abstract

The Brain is a slow computer yet humans can skillfully play games such as tennis where very fast reactions are required. Of particular interest is the evidence for strategic thinking despite planning time being denied by the speed of the game. A review of data on motor and cognitive effects of cerebellar lesions leads to propose that the brain minimizes reaction time during skilled behaviour by eliminating on-line planning. Planning of the next action is concurrent with the execution of the current action. The cerebellum plays a role in preparing fast visuo-motor pathways to produce goal-specific responses to sensory stimuli.. Anatomically, the cerebellum projects to all extra-striate components of the fast sensory-motor route: Posterior parietal cortex (PPC), Premotor cortex (PM) and Motor Cortex (M1). Indirect evidences suggest that the cerebellum sets up stimulus-reaction (S-R) sets at the level of the PPC. Among unresolved issues is the question of how S-R mappings are selected in PPC, how planning is performed and how the cerebellum is informed of plans. Computationally, the proposed principle of off-line planning of S-R associations poses interesting problems: i) planning must now define both the stimulus and the action that it will trigger. ii) There is uncertainty on the stimulus that will appear at the time of execution. Hence the planning process needs to produce not a single optimal solution but a field of solutions. It is proposed here that problem i) can be solved if only learned S-R associations are involved. Problem ii) can be solved if the neural network for S-R mapping has appropriate generalization properties. This is demonstrated with an artificial neural network example using normalized radial basis functions (NRBF). Planning a single optimal trajectory enables to generate appropriate motor command event for initial states outside of the optimal trajectory. Current implementations include a simulated robot arm and the control of a real autonomous wheelchair. In terms of control theory, the principles proposed in this paper unify purely behaviour-based approaches and approaches based on planning using internal representations. On one hand sensory-motor associations enable fast reactions and on the other hand, being products of planning, these associations enable flexible goal adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stein J.F. & Glickstein M.G. (1992) “Role of the cerebellum in visual guidance of movement”, Physiological Reviews, 72:4, pp. 967–1017.

    Google Scholar 

  2. Townsend J., Courchesne E., Covington J., Westerfield M., Singer Harris N., Lynden P., Lowry T.P. and Press G.A. (1999) “Spatial attention deficits in patients with acquired or developmental cerebellar abnormality”, J. Neuroscience, 19:13, pp. 5632–6543.

    Google Scholar 

  3. Butler E.G., Horne M.K. & Hawkins N.J. (1992) “The activity of monkey thalamic and motor cortical-neurons in a skilled ballistic movement”, J. of Physiology-London, 445, pp. 25–48.

    Google Scholar 

  4. Hollands M.A. & Marple-Horvat D.E. (1996) “Visually guided stepping under conditions of step cycle-related denial of visual information”, Exp. Brain Res., 109, pp. 343–356.

    Article  Google Scholar 

  5. Owen A.M., Downes J.J., Sahakian B.J., Plkey C.E. and Robbins T.W. (1990) Planning and Frontal Working Memory Following Frontal Lobe Lesions in Man. Neuropsychologia. 28:10, pp. 1021–1034.

    Article  Google Scholar 

  6. Thomson J.A. (1980) “How do we use visual information to control locomotion”, Trends in Neuroscience, October issue, pp. 247–250.

    Google Scholar 

  7. Marple-Horvat D.E., Hollands M.A., Crowdy K.A. & Criado J.M (1998) “Role of cerebellum in visually guided stepping”, J. of Physiology, 509P, pp. 28S.

    Google Scholar 

  8. Day B.L., Thompson P.D., Harding A.E. & Marsden C.D. (1998) “Influence of vision on upper limb reaching movement in patients with cerebellar ataxia”, Brain, 121, pp. 357–372.

    Article  Google Scholar 

  9. Lu X., Hikosaka O. & Miyach S. (1998) “Role of monkey cerebellar nuclei in skill for sequential movement”, J. of Neurophysiology, 79:5, pp 2245–2254.

    Google Scholar 

  10. Silveri M.C., Misciagna S., Leggio M.G. & Molinari M. (1997) “Spatial dysgraphia and cerebellar lesion: A case report”, Neurology, 48:6, pp. 1529–1532.

    Google Scholar 

  11. Grafman J., Litvan I., Massaquoi S., Stewart M., Sirigu A. & Hallet M. (1992) “Cognitive planning deficits in patients with cerebellar atrophy”, Neurology, 42:8, pp. 1493–1496.

    Google Scholar 

  12. Allen G., Buxton R.B., Wong E.C. and Courchesne E. (1997) Attentional Activation of the Cerebellum Independent of Motor Involvement.,Science, 275, pp. 1940–1943.

    Article  Google Scholar 

  13. Brindley, G.S. (1969) The use made by the cerebellum of the information that it receives from the sense organs. Int. Brain. Res. Org. Bull. 3:80.

    Google Scholar 

  14. Marr, D. (1969) A theory of cerebellar cortex. J. Physiol. 202:437–470.

    Google Scholar 

  15. Albus, J.S. (1971) A theory of cerebellar function, Math. Biosci. 10:25–61.

    Google Scholar 

  16. Thach, W. T. (1996). On the specific role of the cerebellum in motor learning and cognition: Clues from PET activation and lesion studies in man. Behavioral and Brain Sciences 19(3):411–431.

    MathSciNet  Google Scholar 

  17. Bullier J., Schall J.D. and Morel A. (1996) “Functional stream in occipito-frontal connections in the monkey”, Behavioural Brain Research, 76, pp. 89–97.

    Article  Google Scholar 

  18. Rushworth M.F.S., Nixon P.D. and Passingham R.E. (1997) Parietal Cortex and Movement. 1. Movement Selection and Reaching. Experimental Brain Research, 117:2, pp. 292–310.

    Google Scholar 

  19. Schmolesky M.T., Wang Y., Hanes D.P., Thompson K.G., Leutgeb S., Schall J.D. and Leventhal A.G. (1998) “Signal timing across the visual system”, J. Neurophysio., 79:6, pp. 3272–3278.

    Google Scholar 

  20. Johnson P.B., Ferraina S., Bianchi L. & Caminiti R. (1996) “Cortical networks for visual reaching: Physiological and anatomical organization of frontal and parietal lobe arm regions”, Cerebral Cortex, 6, pp. 102–119.

    Article  Google Scholar 

  21. Caminiti R. (1996) From vision to movement: Combinatorial Computation in the Dorsal Stream. In: Caminiti R., Hoffmann K.P., Lacquaniti F. and Altmann J. “Vision and Movement Mechanisms in the Cerebral Cortex”, HFSP, Strassbourg pp. 42–49.

    Google Scholar 

  22. Shimodozono M., Mikami A. and Kubota K. (1997) Visual receptive fields and movement fields of visuomovement neurons in the monkey premotor cortex obtained during a visually guided reaching task. Neuroscience Research 29:1, pp. 55–71.

    Article  Google Scholar 

  23. Braun D., Weber H., Mergner TH. and Schulte-Mönting J. (1992) “Saccadic reaction times in patients with frontal and parietal lesions”, Brain, 115, pp. 1359–1386.

    Article  Google Scholar 

  24. Bonnefoi-Kyriacou B., Trouche E., Legallet E. and Viallet F. (1995) “Planning and execution of pointing movements in cerebellar patients”. Movement Disorders, 10:2, pp. 171–178.

    Article  Google Scholar 

  25. Schwartz A.B., Kettner R. and Georgopoulos A.P. (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relation between single cell discharge and direction of movement. J. of Neuroscience, 8, pp. 113–117.

    Google Scholar 

  26. Zhang Z., Riehle A., Requin J. and Kornblum S. (1997) “Dynamics of Single Neuron Activity in Monkey Primary Motor Cortex Related to Sensorimotor Transformation”, J. Neuroscience, 17:6, pp. 2227–2246.

    Google Scholar 

  27. Middleton F.A. & Strick P.L. (1998) “Cerebellar output: motor and cognitive channels“, Trends in Cognitive Science, 2:9, pp. 348–354.

    Article  Google Scholar 

  28. Kakei S., Yagi J., Wannier T., Na J and Shinoda Y. (1995) Cerebellar and cerebral input to corticocortical and corticofugal neurons in areas 5 and 7 in the cat. J. of Neurophysiology, 74, pp. 400–412.

    Google Scholar 

  29. Matelli M., and Luppino G. (1996) “Thalamic Input to Mesial and Superior Area 6 in the Macaque Monkey”, J. of Comparative Neurology, 372, pp. 59–87.

    Article  Google Scholar 

  30. Fanardzhyan V.V. and Papoyan Y.V. (1995) synaptic Effects Induced in efferent Neurons of the Parietal Associative Cortex of the Cat by Stimulation of the Cerebellar Nuclei. Neurophysiology, 27:3, pp. 148–155.

    Article  Google Scholar 

  31. Schmahmann J.D. and Pandya D.N. (1991) “Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the Rhesus monkey”. J. of Comparative Neurology, 308, pp. 224–248.

    Article  Google Scholar 

  32. Schmahmann J.D. and Sherman J.C. (1998) “The cerebellar cognitive affective syndrome”, Brain, 121, pp. 561–579.

    Article  Google Scholar 

  33. Aizawa H. and Tanji J. (1994) “Corticocortical and thalamocortical responses of neurons in the monkey primary motor cortex and their relation to a trained motor task”, J. of Neurophysiology, 71:2, pp. 550–560.

    Google Scholar 

  34. Snyder L.H., Batista A.P. & Andersen R.A. (1997) “Coding of intention in the posterior parietal cortex”, Nature, Vol. 386, no 6621, pp. 167–170.

    Article  Google Scholar 

  35. Kalaska J.F. & Crammond D.J. (1995) “Deciding not to GO: Neuronal Correlates of Response Selection in a GO/NOGO Task in Primate Premotor and Parietal Cortex”, Cerebral Cortex, 5:5, pp.410–428.

    Article  Google Scholar 

  36. Riehle A. (1991) “Visually induced signal-locked neuronal activity changes in precentral motor areas of the monkey: hierarchical progression of signal processing”. Brain Research, 540, pp. 131–137.

    Article  Google Scholar 

  37. Shen L.M. & Alexander G.E. (1997a) “Neural correlates of a spatial sensory-to-motor transformation in primary motor cortex”, J. of Neurophysiology, 77:3, pp.1171–1194.

    Google Scholar 

  38. Shen L.M. & Alexander G.E. (1997b) “Preferential representation of instructed target location versus limb trajectory in dorsal premotor area”, J. of Neurophysiology, 77:3, pp.1195–1212.

    Google Scholar 

  39. Murata A., Fadiga L., Fogassi L., Gallese V., Raos V. and Rizzolatti G. (1997) “Object representation in the ventral premotor cortex (Area F5) on the monkey”, J. of Neurophysiology, 78, pp 2226–2230.

    Google Scholar 

  40. Grafton S.T., Fagg A.H. and Arbib M.A. (1998) Dorsal premotor cortex and conditional movement selection: A PET functional mapping study. J. Neurophysiology. 79, pp. 1092–1097.

    Google Scholar 

  41. Toni I., Schluter N.D., Joseph O., Friston K. and Passingham R.E. (1999) “Signal-, setand movement-related activity in the human brain: An event-related FMRI study”, Cerebral Cortex, 9:1, pp. 35–49.

    Article  Google Scholar 

  42. Brandt S.A., Ploner C.J., Meyer B.-U., Leistner S. and Villringer A. (1998) “Effects of repetitive transcranial magnetic stimulation over dorsolateral prefrontal and posterior parietal cortex on memory guided saccades”, Experimental Brain Research, 118:2, pp. 197–204.

    Article  Google Scholar 

  43. Lalonde R. and Botez-Marquard T. (1997) The neurobiological basis of movement initiation. Reviews in the Neurosciences, 8, pp. 35–54.

    Google Scholar 

  44. Le T.H., Pardo J.V., and Hu X.(1998) “4 T-fMRI Study of Nonspatial Shifting of Selective Attention: Cerebellar and Parietal Contributions ”, J Neurophysiol, 79, pp. 1535–1548.

    Google Scholar 

  45. Jueptner M., Frith C.D., Brooks D.J., Frackowiak R.S.J. and Passingham R.E. (1997) Anatomy of motor learning. II. Subcortical structures and learning by trial and error. J. Neurophysiology, 77, pp. 1325–1337.

    Google Scholar 

  46. Dagher A., Owen A.M., Boecker H. and Brooks D.J. 1999. Mapping the network for planning: a correlational PET activation study with the Tower of London task. Brain, 122:Pt.10, pp. 973–1987.

    Google Scholar 

  47. Okuda B. (1997) “Early morphological changes in the thalamocortical projection onto the parietal cortex following ablation of the motor cortex in the cat”, Brain Research Bulletin, 44:3, pp. 281–287.

    Article  Google Scholar 

  48. Althoefer K. & Bugmann G. (1995) “Planning and Learning Goal-Directed Sequences of Robot-Arm movements”, Proc. of ICANN’95, Paris, Vol. 1, 449–454.

    Google Scholar 

  49. Bugmann, G., Taylor, J.G. and Denham M. (1995) “Route finding by neural nets” in Taylor J.G (ed) “Neural Networks”, Alfred Waller Ltd, Henley-on-Thames, p. 217–230

    Google Scholar 

  50. Bugmann, G. (1998) “Normalized Radial Basis Function Networks”, Neurocomputing (Special Issue on Radial Basis Function Networks), 20, pp.97–110.

    Google Scholar 

  51. Bugmann G., Koay K.L., Barlow N., Phillips M. and Rodney D. (1998) “Stable Encoding of Robot Trajectories using Normalised Radial Basis Functions: Application to an Autonomous Wheelchair”, Proc. 29th Intl. Symp. Robotics (ISR’98), 27–30 April, Birmingham, UK, pp. 232–235.

    Google Scholar 

  52. Brooks R.A. (1986) A robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics and Automation. RA-2:1, pp. 14–23.

    Google Scholar 

  53. Shallice, T. (1988) #x201C;From neuropsychology to mental structure”, New York: Cambridge University Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bugmann, G. (2001). Role of the Cerebellum in Time-Critical Goal-Oriented Behaviour: Anatomical Basis and Control Principle. In: Wermter, S., Austin, J., Willshaw, D. (eds) Emergent Neural Computational Architectures Based on Neuroscience. Lecture Notes in Computer Science(), vol 2036. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44597-8_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-44597-8_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42363-8

  • Online ISBN: 978-3-540-44597-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics