Skip to main content

Efficient Representation and Computation of Reachable Sets for Hybrid Systems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2623))

Abstract

Computing reachable sets is an essential step in most analysis and synthesis techniques for hybrid systems. The representation of these sets has a deciding impact on the computational complexity and thus the applicability of these techniques. This paper presents a new approach for approximating reachable sets using oriented rectangular hulls (ORHs), the orientations of which are determined by singular value decompositions of sample covariance matrices for sets of reachable states. The orientations keep the over-approximation of the reachable sets small in most cases with a complexity of low polynomial order with respect to the dimension of the continuous state space. We show how the use of ORHs can improve the efficiency of reachable set computation significantly for hybrid systems with nonlinear continuous dynamics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138 (1995) 3–34

    Article  MATH  MathSciNet  Google Scholar 

  2. Bemporad, A., Morari, M.: Verification of hybrid systems via mathematical programming. In: Hybrid Systems: Computation and Control. Volume 1569 of LNCS., Springer (1999) 31–45

    Chapter  Google Scholar 

  3. Greenstreet, M.R., Mitchell, I.: Reachability analysis using polygonal projections. In: Hybrid Systems: Computation and Control. Volume 1569 of LNCS., Springer (1999) 103–116

    Chapter  Google Scholar 

  4. Asarin, E., Bournez, O., Dang, T., Maler, O.: Approximate reachability analysis of piecewise-linear dynamical systems. In: Hybrid Systems — Computation and Control. Volume 1790 of LNCS., Springer (2000) 20–31

    Chapter  Google Scholar 

  5. Wong-Toi, H.: The synthesis of conbtrollers for linear hybrid automata. In: Proc. 36th IEEE Conf. Decision and Control. (1997) 4607–4612

    Google Scholar 

  6. Cury, J., Krogh, B., Niinomi, T.: Synthesis of supervisory controller for hybrid systems based on approximating automata. IEEE Transaction on Automatic Control 43 (1998) 564–569

    Article  MATH  MathSciNet  Google Scholar 

  7. Asarin, E., Bournez, O., Dang, T., Maler, O., Pnueli, A.: Effective synthesis of switching controllers for linear systems. Proc. of the IEEE 88 (2000) 1011–1025

    Google Scholar 

  8. Tomlin, C., Lygeros, J., Sastry, S.: A game theoretic approach to controller design for hybrid systems. Proc. of the IEEE 88 (2000) 949–970

    Google Scholar 

  9. Xia, H., Pang, Y., Trontis, A., Spathopoulos, M.: Eventuality synthesis for controlled linear automata. In: Proc. American Control Conf. (2002) 160–165

    Google Scholar 

  10. Mitchell, I., Bayen, A., Tomlin, C.: Computing reachable sets for continuous dynamic games using level set methods. IEEE Trans. on Automatic Control (2003) to appear

    Google Scholar 

  11. Bournez, K., Maler, O., Pnueli, A.: Orthogonal polyhedra: Representation and computation. In: Hybrid Systems: Computation and Control. Volume 1569 of LNCS., Springer (1999) 46–60

    Chapter  Google Scholar 

  12. Puri, A., Borkar, V., Varaiya, P.: ∈-approximations of differential inclusions. In: Hybrid Systems III. Volume 1066 of LNCS., Springer (1996) 363–376

    Chapter  Google Scholar 

  13. Stursberg, O.: Analysis of switched continuous systems based on discrete approximation. In: Proc. 4th Int. Conf. on Automation of Mixed Processes. (2000) 73–78

    Google Scholar 

  14. Chutinan, A., Krogh, B.: Verification of infinite-state dynamic systems using approximate quotient transition systems. IEEE Trans. on Automatic Control 46 (2001) 1401–1410

    Article  MATH  MathSciNet  Google Scholar 

  15. Botchkarev, O., Tripakis, S.: Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations. In: Hybrid Systems: Computation and Control. Volume 1790 of LNCS., Springer (2000) 73–88

    Chapter  Google Scholar 

  16. Kurzhanski, A., Varaiya, P.: Ellipsiodal techniques for reachability analysis. In: Hybrid Systems: Computation and Control. Volume 1790 of LNCS., Springer (2000) 202–214

    Chapter  Google Scholar 

  17. Chazelle, B.: An optimal convex hull algorithm in any fixed dimension. Discrete Comput. Geom. 10 (1993) 377–409

    Article  MATH  MathSciNet  Google Scholar 

  18. Avis, D., Bremner, D., Seidel, R.: How good are convex hull algorithms? Comput. Geom.: Theory and Appl. 7 (1997) 265–301

    MATH  MathSciNet  Google Scholar 

  19. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? Journ. Computer and System Sciences 57 (1998) 94–124

    Article  MATH  MathSciNet  Google Scholar 

  20. Lafferriere, G., Pappas, G.J., Yovine, S.: A new class of decidable hybrid systems. In: Hybrid Systems: Computation and Control. Volume 1569 of LNCS., Springer (1999) 137–151

    Chapter  Google Scholar 

  21. Pearson, K.: On lines and panes of closest fit to systems of points in space. Phil. Mag. 6 (1901)

    Google Scholar 

  22. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24 (1933) 417–441

    Article  Google Scholar 

  23. Jolliffe, I., ed.: Principal Component Analysis. Series in Statistics. Springer (1986)

    Google Scholar 

  24. Barequet, G., Har-Peled, S.: Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. J. of Algorithms 38 (2001) 99–109

    Article  MathSciNet  Google Scholar 

  25. Klema, V.C., Laub, A.J.: The singular value decomposition: its computation and some applications. IEEE Trans. on Automatic Control 25 (1980) 164–176

    Article  MATH  MathSciNet  Google Scholar 

  26. Barber, C., Dobkin, D., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. on Mathematical Software 22 (1996) 469–483

    Article  MATH  MathSciNet  Google Scholar 

  27. Vandenberghe, L., Boyd, S., Wu, S.: Determinant maximization with linear matrix inequalities. SIAM Journ. Matrix Analysis and Applications 19 (1998) 499–533

    Article  MATH  MathSciNet  Google Scholar 

  28. Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verification. IEEE Trans. on Automatic Control 48 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stursberg, O., Krogh, B.H. (2003). Efficient Representation and Computation of Reachable Sets for Hybrid Systems. In: Maler, O., Pnueli, A. (eds) Hybrid Systems: Computation and Control. HSCC 2003. Lecture Notes in Computer Science, vol 2623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36580-X_35

Download citation

  • DOI: https://doi.org/10.1007/3-540-36580-X_35

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00913-9

  • Online ISBN: 978-3-540-36580-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics