Skip to main content

Resources Required for Preparing Graph States

  • Conference paper
Algorithms and Computation (ISAAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4288))

Included in the following conference series:

Abstract

Graph states have become a key class of states within quantum computation. They form a basis for universal quantum computation, capture key properties of entanglement, are related to quantum error correction, establish links to graph theory, violate Bell inequalities, and have elegant and short graph-theoretical descriptions. We give here a rigorous analysis of the resources required for producing graph states. Using a novel graph-contraction procedure, we show that any graph state can be prepared by a linear-size constant-depth quantum circuit, and we establish trade-offs between depth and width. We show that any minimal-width quantum circuit requires gates that acts on several qubits, regardless of the depth. We relate the complexity of preparing graph states to a new graph-theoretical concept, the local minimum degree, and show that it captures basic properties of graph states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aliferis, P., Leung, D.W.: Computation by measurements: A unifying picture. Physical Review A 70, 062314 (2004)

    Article  Google Scholar 

  2. Bouchet, A.: Diagraph decompositions and eulerian systems. SIAM J. Algebraic Discrete Methods 8, 323–337 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bouchet, A.: Connectivity of isotropic systems. In: Combinatorial Mathematics: Proc. of the Third International Conference. Ann. New York Acad. Sci., vol. 555, pp. 81–93 (1989)

    Google Scholar 

  4. Bouchet, A.: κ-transformations, local complementations and switching. In: Cycles and rays: Basic structures in finite and infinite graphs. NATO Adv. Sci. Inst. Ser., vol. C 301, pp. 41–50. Kluwer Acad. Publ., Dordrecht (1990)

    Google Scholar 

  5. Bouchet, A.: Circle graph obstructions. J. Comb. Theory Ser. B 60(1), 107–144 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Duan, L.M., Raussendorf, R.: Efficient quantum computation with probabilistic quantum gates. Phys. Rev. Lett. 95, 080503 (2005)

    Article  MathSciNet  Google Scholar 

  7. Eisert, J., Gross, D.: Multi-particle entanglement. In: Lectures on Quantum Information, Wiley-VCH, Berlin (2006)

    Google Scholar 

  8. de Fraysseix, H.: Local complementation and interlacement graphs. Discrete Mathematics 33(1), 29–35 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  9. Geelen, J.F.: Matchings, Matroids and Unimodular Matrices. PhD thesis, Univ. Waterloo (1995)

    Google Scholar 

  10. Goyal, K., McCauley, A., Raussendorf, R.: Purification of large bi-colorable graph states (May 2006) quant-ph/0605228

    Google Scholar 

  11. Hein, M., Dür, W., Eisert, J., Raussendorf, R., Van den Nest, M., Briegel, H.J.: Entanglement in graph states and its applications. In: Proc. of the Int. School of Physics Enrico Fermi on Quantum Computers, Algorithms and Chaos (July 2005) quant-ph/0602096

    Google Scholar 

  12. Markov, I., Shi, Y.: Simulating quantum computation by contracting tensor networks. In: Ninth Workshop on Quantum Information Processing (January 2006) (No proceedings)

    Google Scholar 

  13. Oum, S.-i.: Approximating rank-width and clique-width quickly. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 49–58. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Perdrix, S.: State transfer instead of teleportation in measurement-based quantum computation. International Journal of Quantum Information 3(1), 219–224 (2005)

    Article  Google Scholar 

  15. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Physical Review Letters 86, 5188–5191 (2001)

    Article  Google Scholar 

  16. Shi, Y., Duan, L.M., Vidal, G.: Classical simulation of quantum many-body systems with a tree tensor network (in completion) (February 2006)

    Google Scholar 

  17. Van den Nest, M.: Local equivalence of stabilizer states and codes. PhD thesis, Faculty of Engineering, K.U. Leuven, Belgium (May 2005)

    Google Scholar 

  18. Van den Nest, M., Miyake, A., Dür, W., Briegel, H.J.: Universal resources for measurement–based quantum computation (April 2006) quant-ph/0604010

    Google Scholar 

  19. Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Metody Diskret. Analiz. 3, 25–30 (1964) (in Russian)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Høyer, P., Mhalla, M., Perdrix, S. (2006). Resources Required for Preparing Graph States. In: Asano, T. (eds) Algorithms and Computation. ISAAC 2006. Lecture Notes in Computer Science, vol 4288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11940128_64

Download citation

  • DOI: https://doi.org/10.1007/11940128_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49694-6

  • Online ISBN: 978-3-540-49696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics