Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Frontal eye field neurons signal changes in decision criteria

Abstract

Flexible links between sensory stimuli and behavioral responses underlie many cognitive processes. One process that contributes to flexible decision-making is categorization. Some categories are innate or overlearned, but, in many cases, category boundaries represent flexible decision criteria that can shift on the fly to adapt to changes in the environment. The ability to shift category boundaries allows decision-making to adapt to changing circumstances. We found that monkeys were able to switch rapidly between two category boundaries when classifying the speed of a moving dot pattern and that neurons in monkey frontal eye field (FEF) changed their activity when the boundary changed. The responses of a subpopulation of FEF neurons that were sensitive to both stimulus and boundary speed were used to classify the stimuli as accurately as the monkeys' performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Speed-categorization task.
Figure 2: Behavioral performance during the speed-categorization task.
Figure 3: Responses of a category-selective neuron.
Figure 4: Example data for two recording sessions.
Figure 5: Relationship between neuronal activity and behavior.

Similar content being viewed by others

References

  1. Ferrier, D. The Functions of The Brain (Putnam. New York, 1876).

  2. Bruce, C.J., Goldberg, M.E., Bushnell, M.C. & Stanton, G.B. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J. Neurophysiol. 54, 714–734 (1985).

    Article  CAS  Google Scholar 

  3. Schall, J.D., Hanes, D.P., Thompson, K.G. & King, D.J. Saccade target selection in frontal eye field of macaque. I. Visual and premovement activation. J. Neurosci. 15, 6905–6918 (1995a).

    Article  CAS  Google Scholar 

  4. Moore, T. & Armstrong, K.M. Selective gating of visual signals by microstimulation of frontal cortex. Nature 421, 370–373 (2003).

    Article  CAS  Google Scholar 

  5. Thompson, K.G., Biscoe, K.L. & Sato, T.R. Neuronal basis of covert spatial attention in the frontal eye field. J. Neurosci. 25, 9479–9487 (2005).

    Article  CAS  Google Scholar 

  6. Peng, X., Sereno, M.E., Silva, A.K., Lehky, S.R. & Sereno, A.B. Shape selectivity in primate frontal eye field. J. Neurophysiol. 100, 796–814 (2008).

    Article  Google Scholar 

  7. Xiao, Q., Barborica, A. & Ferrera, V.P. Radial motion bias in macaque frontal eye field. Vis. Neurosci. 23, 49–60 (2006).

    Article  Google Scholar 

  8. Bichot, N.P., Schall, J.D. & Thompson, K.G. Visual feature selectivity in frontal eye fields induced by experience in mature macaques. Nature 381, 697–699 (1996).

    Article  CAS  Google Scholar 

  9. Ferrera, V.P., Cohen, J.K. & Lee, B.B. Activity of prefrontal neurons during location and color delayed matching tasks. Neuroreport 10, 1315–1322 (1999).

    Article  CAS  Google Scholar 

  10. Ratcliff, R. & McKoon, G. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 20, 873–922 (2008).

    Article  Google Scholar 

  11. Horwitz, G.D., Batista, A.P. & Newsome, W.T. Representation of an abstract perceptual decision in macaque superior colliculus. J. Neurophysiol. 91, 2281–2296 (2004).

    Article  Google Scholar 

  12. Miller, E.K., Nieder, A., Freedman, D.J. & Wallis, J.D. Neural correlates of categories and concepts. Curr. Opin. Neurobiol. 13, 198–203 (2003).

    Article  CAS  Google Scholar 

  13. Gopnik, A. & Meltzoff, A. The development of categorization in the second year and its relation to other cognitive and linguistic developments. Child Dev. 58, 1523–1531 (1987).

    Article  Google Scholar 

  14. Campbell, R.N. Categorization, early concepts and first language acquisition. in Encyclopedia of Language & Linguistics 4 (eds Asher, R. & Simpson, J.M.Y.) 1899–1904 (Elsevier, Amsterdam, 1994).

  15. Ashby, F.G. & Maddox, W.T. Human category learning. Annu. Rev. Psychol. 56, 149–178 (2005).

    Article  Google Scholar 

  16. Freedman, D.J., Riesenhuber, M., Poggio, T. & Miller, E.K. Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291, 312–316 (2001).

    Article  CAS  Google Scholar 

  17. Freedman, D.J. & Assad, J.A. Experience-dependent representation of visual categories in parietal cortex. Nature 443, 85–88 (2006).

    Article  CAS  Google Scholar 

  18. Maunsell, J.H. & Newsome, W.T. Visual processing in monkey extrastriate cortex. Annu. Rev. Neurosci. 10, 363–401 (1987).

    Article  CAS  Google Scholar 

  19. Kreiman, G., Koch, C. & Fried, I. Category-specific visual responses of single neurons in the human medial temporal lobe. Nat. Neurosci. 3, 946–953 (2000).

    Article  CAS  Google Scholar 

  20. Sigala, N. & Logothetis, N.K. Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415, 318–320 (2002).

    Article  CAS  Google Scholar 

  21. Freedman, D.J., Riesenhuber, M., Poggio, T. & Miller, E.K. A comparison of primate prefrontal and inferior temporal cortex during visual categorization. J. Neurosci. 23, 5235–5246 (2003).

    Article  CAS  Google Scholar 

  22. Farah, M.J. Visual Agnosia (MIT Press, Cambridge, Massachusetts, 2004).

  23. Sereno, A.B. & Maunsell, J.H. Shape selectivity in primate lateral intraparietal cortex. Nature 395, 500–503 (1998).

    Article  CAS  Google Scholar 

  24. Schall, J.D., Morel, A., King, D.J. & Bullier, J. Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J. Neurosci. 15, 4464–4487 (1995).

    Article  CAS  Google Scholar 

  25. Blair, M.R., Watson, M.R., Walshe, R.C. & Maj, F. Extremely selective attention: eye-tracking studies of the dynamic allocation of attention to stimulus features in categorization. J. Exp. Psychol. Learn. Mem. Cogn. 35, 1196–1206 (2009).

    Article  Google Scholar 

  26. Opris, I., Barborica, A. & Ferrera, V.P. On the gap effect for saccades evoked by electrical microstimulation of frontal eye fields in monkeys. Exp. Brain Res. 138, 1–7 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank J. Schall, R. Ratcliff, F. Pestilli, J. Grinband, T. Teichert, C. Barberini and M. Phillips for comments on a preliminary version of this manuscript. This research was supported by US National Institutes of Health grant MH59244 (V.P.F.), the Gatsby Institute (V.P.F.), the National Alliance for Research on Schizophrenia and Depression (V.P.F.) and the Robert Leet and Clara Guthrie Patterson Trust (M.Y.).

Author information

Authors and Affiliations

Authors

Contributions

V.P.F., M.Y. and C.C. designed the experiments, analyzed the data and wrote the manuscript. M.Y. and C.C. carried out the experiments.

Corresponding author

Correspondence to Vincent P Ferrera.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Results and Supplementary Methods (PDF 4089 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrera, V., Yanike, M. & Cassanello, C. Frontal eye field neurons signal changes in decision criteria. Nat Neurosci 12, 1458–1462 (2009). https://doi.org/10.1038/nn.2434

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2434

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing