Skip to main content
Log in

Xylose fermentation by Saccharomyces cerevisiae

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We have performed a comparative study of xylose utilization in Saccharomyces cerevisiae transformants expressing two key enzymes in xylose metabolism, xylose reductase (XR) and xylitol dehydrogenase (XDH), and in a prototypic xylose-utilizing yeast, Pichia stipitis. In the absence of respiration (see text), baker's yeast cells convert half of the xylose to xylitol and ethanol, whereas P. stipilis cells display rather a homofermentative conversion of xylose to ethanol. Xylitol production by baker's yeast is interpreted as a result of the dual cofactor dependence of the XR and the generation of NADPH by the pentose phosphate pathway. Further limitations of xylose utilization in S. cerevisiae cells are very likely caused by an insufficient capacity of the non-oxidative pentose phosphate pathway, as indicated by accumulation of sedoheptulose-7-phosphate and the absence of fructose-1,6-bisphosphate and pyruvate accumulation. By contrast, uptake at high substrate concentrations probably does not limit xylose conversion in S. cerevisiae XYL1/XYL2 transformants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amore R, Wilhelm M, Hollenberg CP (1989) The fermentation of xylose — an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeasts. Appl Microbiol Biotechnol 30:351–357

    Google Scholar 

  • Amore R, Kötter P, Küster C, Ciriacy M, Hollenberg CP (1991) Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis. Gene 109:89–97

    Google Scholar 

  • Barnett JA (1976) The utilization of sugars by yeasts. Adv Carbohydr Chem Biochem 32:126–228

    Google Scholar 

  • Bergmeyer HU (1984) Methods of enzymatic analysis. Verlag Chemie, Weinheim

    Google Scholar 

  • Bisson LF (1988) Derepression of high-affinity glucose uptake requires a functional secretory system in Saccharomyces cerevisiae. J Bacteriol 170:2654–2658

    Google Scholar 

  • Bisson LF, Fraenkel DG (1983) Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc Natl Acad Sci USA 80:1730–1734

    Google Scholar 

  • Bisson LF, Fraenkel DG (1984) Expression of kinase-dependent uptake in Saccharomyces cerevisiae. J Bacteriol 159:1013–1017

    Google Scholar 

  • Broach JR (1983) Construction of high copy yeast vectors using 2-μm circle sequences. Methods Enzymol 101:307–325

    Google Scholar 

  • Bruinenberg PM, Dijken JP van, Scheffers WA (1983) An enzymatic analysis of NADPH production and consumption in Candida utilis. J Gen Microbiol 129:965–971

    Google Scholar 

  • Bruinenberg PM, Bot PHM de, Dijken JP van, Scheffers WA (1984) NADH-linked aldose reductase: the key to anaerobic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 19:256–260

    Google Scholar 

  • Bruinenberg PM, Jonker R, Dijken JP van, Scheffers WA (1985) Utilization of formate as an additional energy source by glucose-limited chemostat cultures of Candida utilis CBS 621 and Saccharomyces cerevisiae CBS 8066. Evidence for the absence of transhydrogenase activity in yeasts. Arch Microbiol 142:302–306

    Google Scholar 

  • Busturia A, Lagunas R (1986) Catabolite inactivation of the glucose transport system in Saccharomyces cerevisiae. J Gen Microbiol 132:379–385

    Google Scholar 

  • Ciriacy M, Breitenbach I (1979) Physiological effects of seven different blocks in glucolysis in Saccharomyces cerevisiae. J Bacteriol 139:152–160

    Google Scholar 

  • Ciriacy M, Porep H (1986) Conversion of pentoses to ethanol by baker's yeast. In: Magnien M (ed) Biomolecular engineering in the European Community. Martinus Nijhoff Publishers, Dordrecht, pp 675–681

    Google Scholar 

  • Cirillo VP (1961) Sugar transport in microorganisms. Ann Rev Microbiol 15:197–218

    Google Scholar 

  • Dellweg H, Rizzi M, Mether H, Debus D (1984) Xylose fermentation by yeasts. 3. Comparison of Pachysolen tannophilus and Pichia stipitis. Biotechnol Lett 6:395–400

    Google Scholar 

  • Dellweg H, Rizzi M, Klein C (1986) Controlled limited aeration and metabolic regulation during the production of ethanol from d-xylose by Pichia stipitis. J Biotechnol 12:111–122

    Google Scholar 

  • Dellweg h, Klein C, Prahl S, Rizzi M, Weigert B (1990) Kinetics of ethanol production from d-xylose by the yeast Pichia stipitis. Food Biotechnol 4:137–148

    Google Scholar 

  • Does AL, Bisson LF (1989) Characterization of xylose uptake in the yeasts Pichia heedii and Pichia stipitis. Appl Environ Microbiol 55:159–164

    Google Scholar 

  • Dohmen RJ, Strasser AWM, Zitomer RS, Hollenberg CP (1989) Regulated overproduction of α-amylase by transformation of the amylolytic yeast Schwanniomyces occidentalis. Curr Genet 15:319–325

    Google Scholar 

  • Gancedo JM, Gancedo C (1973) Concentrations of intermediary metabolites in yeast. Biochemie 55:205–211

    Google Scholar 

  • Gong C-S, Chen LF, Flickinger MC, Tsao GT (1981) Conversion of hemicellulose carbohydrates. Adv Biochem Eng 20:93–118

    Google Scholar 

  • Halliwell G, Lovelady J (1981) Utilization of carboxymethylcellulose and enzyme synthesis by Trichoderma koningii. J Gen Microbiol 126:211–217

    Google Scholar 

  • Holzer H, Goedde HW (1957) Zwei Wege von Pyruvat zu Acetyl-Coenzym A in Hefe. Biochem Z 326:385

    Google Scholar 

  • Jeffries TW (1983) Utilization of xylose by bacteria, yeast and fungi. Adv Biochem Eng 27:1–32

    Google Scholar 

  • Jeffries TW (1985) Emerging technology for fermenting d-xylose. TIBS 3:208–212

    Google Scholar 

  • Kilian SG, Uden N van (1988) Transport of xylose and glucose in the xylose-fermenting yeast Pichia stipitis. Appl Microbiol Biotechnol 27:545–548

    Google Scholar 

  • Kötter P, Amore R, Hollenberg CP, Ciriacy M (1990) Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18:493–500

    Google Scholar 

  • Lagunas R, Gancedo JM (1973) Reduced pyrimidine-nucleotide balance in glucose-growing Saccharomyces cerevisiae. Eur J Biochem 37:90–94

    Google Scholar 

  • Lang JM, Cirillo VP (1987) Glucose transport in a kinaseless Saccharomyces cerevisiae mutant. J Bacteriol 169:2932–2937

    Google Scholar 

  • Ligthelm ME, Prior BA, Preez JC du, Brandt V (1988) An investigation of d-(1-13C) xylose metabolism in Pichia stipitis under aerobic and anaerobic conditions. Appl Microbiol Biotechnol 28:293–296

    Google Scholar 

  • Meyrial V, Delgenes JP, Moletta R, Navarro JM (1991) Xylitol production from d-xylose by Candida guillermondii: fermentation behaviorr. Biotechnol Lett 13:281–286

    Google Scholar 

  • Neirinck L, Maleszka R, Schneider H (1982) Alcohol production from sugar mixtures by Pachysolen tannophilus. Biotechnol Bioeng Symp 12:161

    Google Scholar 

  • Porep HJ (1987) Xyluloseverwertung bei Saccharomyces cerevisiae. PhD thesis, University of Düsseldorf

  • Prior BA, Kilian SG, Preez JC du (1989) Fermentation of d-xylose by the yeasts Candida shehatae and Pichia stipitis. Process Biochem 21–32

  • Ramos J, Szkutnicka K, Cirillo VP (1988) Relationship between low- and high-affinity glucose transport systems in Saccharomyces cerevisiae. J Bacteriol 170:5375–5377

    Google Scholar 

  • Rizzi M, Erlemann P, Bui-Thanh N-A, Dellweg H (1988) Xylose fermentation by yeasts. 4. Purification and kinetic studies of xylose reductase from Pichia stipitis. Appl Microbiol Biotechnol 29:148–154

    Google Scholar 

  • Sarthy AV, McConaught BL, Lobo Z, Sundstrom JA, Furlong CE, Hall BD (1987) Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl Environ Microbiol 53:1996–2000

    Google Scholar 

  • Schneider H (1989) Conversion of pentoses to ethanol by yeasts and fungi. CRC Crit Rev Biochem Mol Biol 9:1–40

    Google Scholar 

  • Senac T, Hahn-Hägerdal B (1990) Intermediary metabolite concentrations in in xylulose- and glucose-fermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol 56:120–126

    Google Scholar 

  • Serrano R, Fuente G de la (1974) Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae. Mol Cell Biochem 5:161–171

    Google Scholar 

  • Skoog K, Hahn-Hägerdal B (1988) Xylose fermentation. Enzyme Microb Technol 10:66–80

    Google Scholar 

  • Skoog K, Hahn-Hägerdal B (1990) Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl Environ Microbiol 56:3389–3394

    Google Scholar 

  • Slininger PJ, Bothast RJ, Okos MR, Ladisch MR (1985) Comparative evaluation of ethanol production oy xylose-fermenting yeasts presented high xylose concentrations. Biotechnol Lett 7:431–436

    Google Scholar 

  • Tran-Dinh S, Herve M, Wietzerbin J (1991) Determination of flux through different metabolite pathways in Saccharomyces cerevisiae by 1H-NMR and 13C-NMR spectroscopy. Eur J Biochem 201:715–721

    Google Scholar 

  • Wang PY, Schneider H (1980) Growth of yeasts on d-xylulose. Can J Microbiol 26:1165–1168

    Google Scholar 

  • Wilhelm M (1986) Klinierung des Bacillus subtilis Xylose Isomerase Gens: Expression in Escherichia coli und in der Bäckerhefe Saccharomyces cerevisiae. PhD thesis, Heinrich-Heine-Universität, Düsseldorf

    Google Scholar 

  • Wong KKY, Tan LUL, Saddler JN (1988) Multiplicity of β-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev 52:305–317

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: M. Ciriacy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kötter, P., Ciriacy, M. Xylose fermentation by Saccharomyces cerevisiae . Appl Microbiol Biotechnol 38, 776–783 (1993). https://doi.org/10.1007/BF00167144

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00167144

Keywords

Navigation