Skip to main content
Log in

Air mass origin signals in δ 18O of tree-ring cellulose revealed by back-trajectory modeling at the monsoonal Tibetan plateau

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

A profound consideration of stable oxygen isotope source water origins is a precondition for an unambiguous palaeoenvironmental interpretation of terrestrial δ 18O archives. To stress the influence of air mass origins on widely used δ 18O tree-ring chronologies, we conducted correlation analyses between six annually resolved δ 18O tree-ring cellulose (\(\delta ^{18}\textit {O}_{TC}\)) chronologies and mean annual air package origins obtained from backward trajectory modeling. This novel approach has been tested for a transect at the southeastern Tibetan plateau (TP), where air masses with different isotopic composition overlap. Detailed examinations of daily precipitation amounts and monthly precipitation δ 18O values (\(\delta ^{18}\textit {O}_{P}\)) were conducted with the ERA Interim and Laboratoire de Météorologie Dynamique General Circulation Model (LMDZiso) data, respectively. Particularly the southernmost study sites are influenced by a distinct amount effect. Here, air package origin \(\delta ^{18}\textit {O}_{TC}\) relations are generally weaker in contrast to our northern located study sites. We found that tree-ring isotope signatures at dry sites with less rain days per year tend to be influenced stronger by air mass origin than tree-ring isotope values at semi-humid sites. That implies that the local hydroclimate history inferred from \(\delta ^{18}\textit {O}_{TC}\) archives is better recorded at semi-humid sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aggarwal PK, Fröhlich K, Kulkarni KM, Gourcy LL (2004) Stable isotope evidence for moisture sources in the Asian summer monsoon under present and past climate regimes. Geophys Res Lett 31(8):1–4. doi:10.1029/2004GL019911

  • Aizen V, Aizen E, Melack J, Martman T (1996) Isotopic measurements of precipitation on central Asian glaciers (Southeastern Tibet, northern Himalayas, central Tien Shan). J Geophys Res 101(D4):9185–9198

    Article  Google Scholar 

  • An W, Liu X, Leavitt S, Xu G, Zeng X, Wang W, Qin D, Ren J (2014) Relative humidity history on the Batang–Litang Plateau of western China since 1755 reconstructed from tree-ring δ 18O and δD. Clim Dyn 42(9-10):2639–2654. doi:10.1007/s00382-013-1937-z

  • Araguás-Araguás L, Fröhlich K, Rozanski K (1998) Stable isotope composition of precipitation over southeast Asia. J Geophys Res Lett 103(D22):721–728

    Google Scholar 

  • Barbour M, Roden J, Farquhar G, Ehleringer J (2004) Expressing leaf water and cellulose oxygen isotope ratios as enrichment above source water reveals evidence of a Péclet effect. Oecologia 138:426–435. doi:10.1007/s00442-003-1449-3

  • Berkelhammer M, Stott L (2008) Recent and dramatic changes in Pacific storm trajectories recorded in δ 18O from Bristlecone Pine tree ring cellulose. Geochem Geophys Geosyst 9(4):1525–2027. doi:10.1029/2007GC001803

  • Bershaw J, Penny SM, Garzione CN (2012) Stable isotopes of modern water across the Himalaya and eastern Tibetan Plateau: implications for estimates of paleoelevation and paleoclimate. J Geophys Res.: Atmospheres 117(D2):1–18. doi:10.1029/2011JD016132

  • Böhner J (2006) General climatic controls and topoclimatic variations in Central and High Asia. Boreas 35:279–295

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73(3):1045–1055. http://www.jstor.org/stable/1940179

    Article  Google Scholar 

  • Breitenbach S, Adkins J, Meyer H, Marwan N, Kumar K, Haug G (2010) Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth Planet Sci Lett 292:212–220. doi:10.1016/j.epsl.2010.01.038

  • Bräuning A (1994) Dendrochronology for the last 1400 years in Eastern Tibet. GeoJournal 1(34):75–95

    Article  Google Scholar 

  • Bräuning A (2006) Tree-ring evidence of “Little Ice Age” glacier advances in southern Tibet. The Holocene 16(3):369–380

    Article  Google Scholar 

  • Brienen RJW, Hietz P, Wanek W, Gloor M (2013) Oxygen isotopes in tree rings record variation in precipitation δ 18O and amount effects in the south of Mexico. J Geophys Res.: Biogeosciences 118(4):1604–1615. doi:10.1002/2013JG002304

  • Cai Z, Tian L (2016) Atmospheric controls on seasonal and interannual variations in the precipitation isotope in the East Asian monsoon region. J Climate 29(4):1339–1352. doi:10.1175/jcli-d-15-0363.1

  • Cook E, Kairiukstis L (1990) Methods of dendrochronology, 1st edn. Springer, Netherlands, Dordrecht, Boston, London. doi:10.1007/978-94-015-7879-0

  • Curio J, Maussion F, Scherer D (2015) A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau. Earth Syst Dyn 6(1):109–124. doi:10.5194/esd-6-109-2015

  • Danis P, Masson-Delmotte V, Stievenard M, Guillemin M, Daux V, Naveau P, von Grafenstein U (2006) Reconstruction of past precipitation δ 18O using tree-ring cellulose δ 18O and δ 13C: A calibration study near Lac d’Annecy, France. Earth Planet Sci Lett 243:439–448. doi:10.1016/j.epsl.2006.01.023

  • Dayem KE, Molnar P, Battisti DS, Roe GH (2010) Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia. Earth Planet Sci Lett 295(1-2):219–230. http://www.sciencedirect.com/science/article/pii/S0012821X10002372

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorolog Soc 137(656):553–597. doi:10.1002/qj.828

  • Draxler R, Hess G (1997) Description of the HYSPLIT 4 modeling system. NOAA technical memorandum erl arl-224 Air Resoruces Laboratory. Silver Spring, Maryland

    Google Scholar 

  • Draxler R, Hess G (1998) An overview of the HYSPLIT4 modelling system for trajectories, dispersion, and deposition. Aust Meteorol Mag 47:295–308

    Google Scholar 

  • Dykoski C, Edwards R, Cheng H (2005) A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet Sci Lett 233:71–86. doi:10.1016/j.epsl.2005.01.036

  • Edwards T, Fritz P (1986) Assessing meteoric water composition and relative humidity from 18O and 2H in wood cellulose: paleoclimatic implications for southern Ontario, Canada. Appl Geochem 1:715–723

    Article  CAS  Google Scholar 

  • Fritts H (1976) Tree rings and climate London. San Francisco, New York

    Google Scholar 

  • Gao J, Masson-Delmotte V, Yao T, Tian L, Risi C, Hoffmann G (2010) Precipitation water stable isotopes in the south Tibetan Plateau: observations and modeling. J Climate 24(13):3161–3178. doi:10.1175/2010JCLI3736.1

  • Gao J, Masson-Delmotte V, Risi C, He Y, Yao T (2013) What controls precipitation δ 18O in the southern Tibetan Plateau at seasonal and intra-seasonal scales? A case study at Lhasa and Nyalam. Tellus B 65(0). doi:10.3402/tellusb.v65i0.21043

  • Gao J, Risi C, Masson-Delmotte V, He Y, Xu B (2015a) Southern Tibetan Plateau ice core δ 18O reflects abrupt shifts in atmospheric circulation in the late 1970s. Clim Dyn. doi:10.1007/s00382-015-2584-3

  • Gao J, Shen SSP, Yao T, Tafolla N, Risi C, He Y (2015b) Reconstruction of precipitation δ 18O over the Tibetan Plateau since 1910. J Geophys Res.: Atmospheres 120(10):4878–4888. doi:10.1002/2015JD023233

  • Gerlitz L, Conrad O, Böhner J (2014) Large scale atmospheric forcing and topographic modification of precipitation rates over High Asia – a neural network based approach. Earth Syst Dyn Discussions 5:1275–1317. doi:10.5194/esdd-5-1275-2014

  • Gessler A, Brandes E, Buchmann N, Helle G, Rennenberg H, Barnard R (2009) Tracing carbon and oxygen isotope signals from newly assimilated sugars in the leaves to the tree-ring archive. Plant, Cell Environ 32(7):780–795 . doi:10.1111/j.1365-3040.2009.01957.x

  • Gessler A, Brandes E, Keitel C, Boda S, Kayler ZE, Granier A, Barbour M, Farquhar GD, Treydte K (2013) The oxygen isotope enrichment of leaf-exported assimilates—does it always reflect lamina leaf water enrichment?. New Phytol 200(1):144–157. doi:10.1111/nph.12359

  • Grießinger J (2008) Untersuchungen zur Klimavariabilität auf dem Tibetischen Plateau- Ein Beitrag auf der Basis stabiler Kohlenstoff- und Sauerstoffisotope in Jahrringen von Bäumen waldgrenznaher Standorte. Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment Band 19, University Stuttgart

  • Grießinger J, Bräuning A, Helle G, Thomas A, Schleser G (2011) Late Holocene Asian summer monsoon variability reflected by δ 18O in tree-rings from Tibetan junipers. Geophys Res Lett 38:1–5. doi:10.1029/2010GL045988

  • Grießinger J, Bräuning A, Helle G, Hochreuther P, Schleser G (2016) Late Holocene relative humidity history on the southeastern Tibetan plateau inferred from a tree-ring δ 18O record: recent decrease and conditions during the last 1.500 years. Quat Int:1–7. doi:10.1016/j.quaint.2016.02.011

  • He M, Yang B, Bräuning A, Wang J, Wang Z (2012) Tree-ring derived millennial precipitation record for the south-central Tibetan Plateau and its possible driving mechanism. The Holocene 23(1):36–45. doi:10.1177/0959683612450198

  • He M, Yang B, Wang Z, Bräuning A, Pourtahmasi K, Oladi R (2015) Climatic forcing of xylem formation in Qilian juniper on the northeastern Tibetan Plateau. Trees. doi:10.1007/s00468-015-1333-x

  • Hill SA, Waterhouse JS, Field EM, Switsur VR, Ap Rees T (1995) Rapid recycling of triose phosphates in oak stem tissue. Plant, Cell Environ 18(8):931–936. doi:10.1111/j.1365-3040.1995.tb00603.x

  • Hong Y, Hong B, Lin Q, Yasuyuki S, Masashi H, Zhu Y, Leng X, Wang Y, Wang H, Yi L (2005) Inverse phase oscillations between the east Asian and Indian Ocean summer monsoons during the last 12000 years and paleo-El Niño. Earth Planet Sci Lett 231:337–346. doi:10.1016/j.epsl.2004.12.025

  • Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, LeVan P, Li ZX, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27(7-8):787–813. doi:10.1007/s00382-006-0158-0

  • Hoyos C, Webster P (2007) The role of intraseasonal variability in the nature of Asian monsoon precipitation. Journal of Climate 20:4402–4424. doi:10.1175/JCLI4252.1

  • Hren M, Bookhagen B, Blisniuk P, Booth A, Chamberlain C (2009) δ 18O and δD of streamwaters across the Himalaya and Tibetan Plateau: implications for moisture sources and paleoelevation reconstructions. Earth Planet Sci Lett 288:20–32. doi:10.1016/j.epsl.2009.08.041

  • Iannone R (2014) Splitr: Use the HYSPLIT model inside R and do more with it. R package version 0.19

  • Johnson K, Ingram B (2004) Spatial and temporal variability in the stable isotope systematics of modern precipitation in China: implications for paleoclimate reconstructions. Earth Planet Sci Lett 220:365–377. doi:10.1016/S0012-821X(04)00036-6

  • Kahmen A, Simonin K, Tu KP, Merchant A, Callister A, Siegwolf R, Dawson TE, Arndt SK (2008) Effects of environmental parameters, leaf physiological properties and leaf water relations on leaf water δ 18O enrichment in different Eucalyptus species. Plant, Cell Environ 31(6):738–751. doi:10.1111/j.1365-3040.2008.01784.x

  • Kahmen A, Simonin K, Tu K, Goldsmith G, Dawson T (2009) The influence of species and growing conditions on the 18-O enrichment of leaf water and its impact on ‘effective path length’. New Phytol 184:619–630. doi:10.1111/j.1469-8137.2009.03008.x

  • Kahmen A, Sachse D, Arndt S, Tu K, Farrington H, Vitousek P, Dawson T (2011) Cellulose δ 18O is an index of leaf-to-air vapor pressure difference (VPD) in tropical plants. Proc Natl Acad Sci 108(5):1981–1986. www.pnas.org/cgi/doi/10.1073/pnas.1018906108

  • Kramer P, Boyer J (1995) Water relations of plants and soils. Academic Press. https://books.google.de/books?id=7kuQvPOd7AUC

  • Kurita N, Yamada H (2008) The role of local moisture recycling evaluated using stable isotope data from over the middle of the Tibetan Plateau during the monsoon season. J Hydrometeor 9(4):760–775. doi:10.1175/2007JHM945.1

  • Laumer W, Andreau L, Helle G, Schleser G, Wieloch T, Wissel H (2009) A novel approach for the homogenization of cellulose to use micro-amounts for stable isotope analyses. Rapid Commun Mass Spectrom 23:1934–1940. doi:10.1002/rcm.4105

  • Leuenberger M, Borella S, Stocker T, Saurer M, Siegwolf R, Schweingruber F, Matyssek R (1998) Stable isotopes in tree rings as climate and stress indicators. Vdf Hochschulverlag AG

  • Li X, Liang E, Gricar J, Prislan R, Rossi S, Cufar K (2012) Age dependence of xylogenesis and its climatic sensitivity in Smith fir on the south-eastern Tibetan Plateau. Tree Physiol 33(1):48–56. doi:10.1093/treephys/tps113

  • Liu Z, Tian L, Chai X, Yao T (2008) A model-based determination of spatial variation of precipitation δ 18O over China. Chem Geol 249:203–212. doi:10.1016/j.chemgeo.2007.12.011

  • Liu X, Zeng X, Leavitt S, Wang W, An W, Xu G, Sun W, Wang Y, Qin JDR (2013) A 400-year tree-ring δ 18O chronology for the southeastern Tibetan Plateau: implications for inferring variations of the regional hydroclimate. Global Planet Change 104:23–33. doi:10.1016/j.gloplacha.2013.02.005

  • Maussion F, Scherer D, Mölg T, Collier E, Curio J, Finkelnburg R (2014) Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. J Clim 27:1910–1927. doi:10.1175/JCLI-D-13-00282.1

  • McCarroll D, Loader N (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801

    Article  Google Scholar 

  • Miller D, Mora C, Grissino D, Mock C, Uhle M, Sharp Z (2006) Tree-ring isotope records of tropical cyclone activity. Proc Natl Acad Sci 103(39):14,294–14,297

    Article  CAS  Google Scholar 

  • Mölg T, Maussion F, Scherer D (2014) Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat Clim Change 4:68–73. doi:10.1038/NCLIMATE2055

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) vegan: Community Ecology Package. http://CRAN.R-project.org/package=vegan r package version 2.2-1

  • Overpeck J, Cole J (2008) The rhythm of the rains. Nature 451(28):1061–1063

    Article  CAS  Google Scholar 

  • Qin C, Yang B, Bräuning A, Grießinger J, Wernicke J (2015) Drought signals in tree-ring stable oxygen isotope series of qilian juniper from the arid northeastern tibetan plateau. Global Planet Change 125:48–59. doi:10.1016/j.gloplacha.2014.12.002

  • R Core Team (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org

  • Ramesh R, Bhattacharya S, Gopalan K (1986) Climatic correlations in the stable isotope records of silver fir (Abies pindrow) trees from Kashmir, India. Earth Planet Sci Lett 79:66–74

    Article  CAS  Google Scholar 

  • Risi C, Noone D, Worden J, Frankenberg C, Stiller G, Kiefer M, Funke B, Walker K, Bernath P, Schneider M, Wunch D, Sherlock V, Deutscher N, Griffith D, Wennberg PO, Strong K, Smale D, Mahieu E, Barthlott S, Hase F, García O, Notholt J, Warneke T, Toon G, Sayres D, Bony S, Lee J, Brown D, Uemura R, Sturm C (2012) Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations. J Geophys Res.: Atmospheres 117(D5):1–26. doi:10.1029/2011JD016621, d05303

  • Roden J, Ehleringer J (1999) Observations of hydrogen and oxygen isotopes in leaf water confirm the Craig-Gordon Model under wide-ranging environmental conditions. Plant Physiol 120:1165–1173

    Article  CAS  Google Scholar 

  • Roden J, Lin G, Ehleringer J (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. yy 64(1):21–35

    CAS  Google Scholar 

  • Sano M, Ramesh R, Sheshshayee M, Sukumar R (2011) Increasing aridity over the past 223 years in the Nepal Himalaya inferred from a tree-ring δ 18O chronology. The Holocene 1:1–9. doi:10.1177/0959683611430338

  • Sano M, Tshering P, Komori J, Fujita K, Xu C, Nakatsuka T (2013) May–September precipitation in the Bhutan Himalaya since 1743 as reconstructed from tree ring cellulose δ 18O. J Geophys Res.: Atmosphers 118:8399–8410. doi:10.1002/jgrd.50664

  • Shi C, Masson-Delmotte V, Risi C, Eglin T, Stievenard M, Pierre M, Wang X, Gao J, Bréon FM, Zhang QB, Daux V (2011) Sampling strategy and climatic implications of tree-ring stable isotopes on the southeast Tibetan Plateau. Earth Planet Sci Lett 301(12):307–316. http://www.sciencedirect.com/science/article/pii/S0012821X10007090

    Article  CAS  Google Scholar 

  • Shi C, Daux V, Zhang QB, Risi C, Hou SG, Stievenard M, Pierre M, Li Z, Masson-Delmotte V (2012) Reconstruction of southeast Tibetan Plateau summer climate using tree ring δ 18O: moisture variability over the past two centuries. Clim Past 8:205–213. doi:10.5194/cp-8-205-2012

  • Simmonds I, Bi D, Hope P (1999) Atmospheric water vapor flux and Its association with rainfall over China in summer. Journal of Climate 12:1353–1367. doi:10.1175/1520-0442

  • Sternberg L (2009) Oxygen stable isotope ratios of tree-ring cellulose: the next phase of understanding. New Phytol 181:553– 562

    Article  Google Scholar 

  • Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, Salzmann M, Schmidt H, Bader J, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roeckner E (2013) Atmospheric component of the mpi-m earth system model: Echam6. J Adv Model Earth Syst 5(2):146–172. doi:10.1002/jame.20015

  • Sturm K, Hoffmann G, Langmann B, Stichler W (2005) Simulation of δ 18O in precipitation by the regional circulation model REMOiso. Hydrol Processes 19 (17):3425–3444. doi:10.1002/hyp.5979

  • Thomas A, Herzfeld U (2004) REGEOTOP: New climatic data fields for East Asia based on localized relief information and geostatistical methods. Int J Climatol 24:1283–1306. doi:10.1002/joc.1058

  • Thompson L, Yao T, Mosley-Thompson E, Davis M, Henderson K, Lin PN (2000) A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores. Science 289:1916–1919. doi:10.1126/science.289.5486.1916

  • Tian L, Masson-Delmotte V, Stievenard M, Yao T, Jouzel J (2001a) Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J Geophys Res.: Atmospheres 106 (D22):28,081–28,088. doi:10.1029/2001JD900186

  • Tian L, Yao T, Numaguti A, Sun W (2001b) Stable isotope variations in Monsoon precipitation on the Tibetan Plateau. J Meteorol Soc Jpn 79(5):959–966

    Article  Google Scholar 

  • Tian L, Yao T, Schuster P, White J, Ichiyanagi K, Pendall E, Pu Y, Yu W (2003) Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau. J Geophys Res 108:1–10. doi:10.1029/2002JD002173

  • Tian L, Yao T, MacClune K, White J, Schilla A, Vaughn B, Vachon R, Ichiyanagi (2007) Stable isotopic variations in west China: a consideration of moisture sources. J Geophys Res 112:1–12. doi:10.1029/2006JD007718

  • Treydte K, Boda S, Graf Pannatier E, Fonti P, Frank D, Ullrich B, Saurer M, Siegwolf R, Battipaglia G, Werner W, Gessler A (2014) Seasonal transfer of oxygen isotopes from precipitation and soil to the tree ring: source water versus needle water enrichment. New Phytol 202:772–783. doi:10.1111/nph.12741

  • Wang XF, Yakir D, Avishai M (1998) Non-climatic variations in the oxygen isotopic compositions of plants. Global Change Biol 4(8):835–849. doi:10.1046/j.1365-2486.1998.00197.x

  • Waterhouse J, Switsur V, Barker A, Carter A, Robertson I (2002) Oxygen and hydrogen isotope ratios in tree rings: how well do models predict observed values? Earth Planet Sci Lett 201:421–430

    Article  CAS  Google Scholar 

  • Webster P, Magana V, Palmer T, Shukla J, Tomas R, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103(C7):14,451–14,510. doi:10.1029/97JC02719

  • Wernicke J, Grießinger J, Hochreuther P, Bräuning A (2015) Variability of summer humidity during the past 800 years on the eastern Tibetan Plateau inferred from δ 18O of tree-ring cellulose. Clim Past 11:327–337. doi:10.5194/cp-11-327-2015

  • Wieloch T, Helle G, Heinrich I, Voigt M, Schyma P (2011) A novel device for batch-wise isolation of α-cellulose from small-amount wholewood samples. Dendrochronologia 29(2):115–117. doi:10.1016/j.dendro.2010.08.008

  • Wrozyna C, Frenzel P, Steeb P, Zhu L, van Geldern R, Mackensen A, Schwalb A (2010) Stable isotope and ostracode species assemblage evidence for lake level changes of Nam Co, Southern Tibet, during the past 600 years. Quat Int 212(1):2–13. doi:10.1016/j.quaint.2008.12.010, http://www.sciencedirect.com/science/article/pii/S1040618209000068, past, recent, and future climate-change impacts on hydrologic and environmental variability in selected regions of Asia

  • Xu H, Hong Y, Hong B (2012) Decreasing Asian summer monsoon intensity after 1860 AD in the global warming epoch. Clim Dyn 39:2079–2088. doi:10.1007/s00382-012-1378-0

  • Yadava MG, Ramesh R, Pandarinath K (2007) A positive ‘amount effect’ in the Sahayadri (Western Ghats) rainfall. Cur Sci 93(4):560–564

    CAS  Google Scholar 

  • Yang K, Koike T, Fujii H, Tamura T, Xu X, Bian L, Zhou M (2004) The daytime evolution of the atmospheric boundary layer and convection over the Tibetan Plateau: observations and simulations. J Meteorol Soc Jpn Ser II 82(6):1777–1792. doi:10.2151/jmsj.82.1777

  • Yang B, Qin C, Wang J, He M, Melvin T, Osborn T, Briffa K (2014) A 3.500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. Proc Natl Acad Sci 111(8):2903–2908. doi:10.1073/pnas.1319238111/-/DCSupplemental

  • Yao T, Masson-Delmotte V, Gao J, Yu W, Yang X, Risi C, Sturm C, Werner M, Zhao H, He Y, Ren W, Tian L, Shi C, Hou S (2013) A review of climatic controls on δ 18O in precipitation over the Tibetan Plateau: observations and simulations. Rev Geophys 51 (4):525–548. doi:10.1002/rog.20023

  • Yasunari T, Seki Y (1992) Role of the Asian monsoon on the interannual variability of the global climate system. J Meteorol Soc Jpn 70(1):177–189

    Article  Google Scholar 

  • Yu W, Yao T, Tian L, Wang Y, Li Z, Sun W (2006) Oxygen-18 isotopes in precipitation on the eastern Tibetan Plateau. Ann Glaciol 43:263–268

    Article  CAS  Google Scholar 

  • Yu W, Yao T, Tian L, Ma Y, Kurita N, Ichiyanagi K, Wang Y, Sun W (2007) Stable isotope variations in precipitation and moisture trajectories on the western Tibetan Plateau, China. Arct Antarct Alp Res 39(4):688–693

    Article  Google Scholar 

  • Yu W, Yao T, Tian L, Ma Y, Ichiyanagi K, Wang Y, Sun W (2008a) Relationships between δ 18O in precipitation and air temperature and moisture origin on a south-north transect of the Tibetan Plateau. Atmos Res 87(2):158–169. doi:10.1016/j.atmosres.2007.08.004, http://www.sciencedirect.com/science/article/pii/S0169809507001536

  • Yu W, Yao T, Tian L, Ma Y, Ichiyanagi K, Wang Y, Sun W (2008b) Relationships between δ 18O in precipitation and air temperature and moisture origin on a south–north transect of the Tibetan Plateau. Atmos Res 87:158–169. doi:10.1016/j.atmosres.2007.08.004

  • Yu W, Yao T, Kang S, Pu J, Yang W, Gao T, Zhao H, Zhou H, Li S, Wang W et al (2013) Different region climate regimes and topography affect the changes in area and mass balance of glaciers on the north and south slopes of the same glacierized massif (the West Nyainqentanglha Range, Tibetan Plateau). Journal of Hydrology 495:64–73. doi:10.1016/j.jhydrol.2013.04.034

  • Yu W, Xu B, Lai CT, Ma Y, Tian L, Qu D, Zhu Z (2014) Influences of relative humidity and Indian monsoon precipitation on leaf water stable isotopes from the southeastern Tibetan Plateau. Geophys Res Lett 41(21):7746–7753. doi:10.1002/2014GL062004

  • Yu W, Tian L, Ma Y, Xu B, Qu D (2015) Simultaneous monitoring of stable oxygen isotope composition in water vapour and precipitation over the central Tibetan Plateau. Atmos Chem Phys 15(18):10,251–10,262. doi:10.5194/acp-15-10251-2015

  • Yu W, Wei F, Ma Y, Liu W, Zhang Y, Luo L, Tian L, Xu B, Qu D (2016) Stable isotope variations in precipitation over Deqin on the southeastern margin of the Tibetan Plateau during different seasons related to various meteorological factors and moisture sources. Atmos Res 170:123–130. doi:10.1016/j.atmosres.2015.11.013

  • Zuur AF, Ieno EN, Elphick CS (2009) A protocol for data exploration to avoid common statistical problems. Meth Ecol Evol 1(1):3–14. doi:10.1111/j.2041-210x.2009.00001.x

Download references

Acknowledgments

The authors thank the German Federal Ministry of Education and Research (BMBF: FKZ 03G0811) and the German Research Council (DFG: BR 1895/21) for their financial support. We also thank Roswitha Höfner-Stich for her efficient and precise analysis of stable oxygen isotopes ratios in tree-ring cellulose. Additionally, we thank Dr. Masaki Sano for providing the data of study site Bhutan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Wernicke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wernicke, J., Hochreuther, P., Grießinger, J. et al. Air mass origin signals in δ 18O of tree-ring cellulose revealed by back-trajectory modeling at the monsoonal Tibetan plateau. Int J Biometeorol 61, 1109–1124 (2017). https://doi.org/10.1007/s00484-016-1292-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-016-1292-y

Keywords

Navigation