Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Record of the ancient martian hydrosphere and atmosphere preserved in zircon from a martian meteorite

Abstract

Mars exhibits ample evidence for an ancient surface hydrosphere. The oxygen isotope compositions of carbonate minerals and alteration products in martian meteorites suggest that this ancient hydrosphere was not in isotopic equilibrium with the martian lithosphere1,2,3,4. Martian meteorite NWA 7533 is composed of regolith breccia from the heavily cratered terrains of ancient Mars and contains zircon grains for which U–Pb ages have been reported5. Here we report variations between the oxygen isotopic compositions of four zircon grains from NWA 7533. We propose that these variations can be explained if the mantle melts from which the zircon crystallized approximately 4.43 Gyr ago had assimiliated 17O-enriched regolith materials, and that some of the zircon grains, while in a metamict state, were later altered by low-temperature fluids near the surface less than 1.7 Gyr ago. Enrichment of the martian regolith in 17O before the zircon crystallized, presumably through exchange with the 17O-enriched atmosphere or hydrosphere during surface alteration, suggests that the thick primary atmosphere of Mars was lost within the first 120 Myr after accretion. We conclude that the observed variation of 17O anomalies in zircon from NWA 7533 points to prolonged interaction between the martian regolith, atmosphere and hydrosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oxygen isotope compositions of martian zircon.
Figure 2: Relationships between oxygen isotope compositions and 207Pb/206Pb.
Figure 3: Schematic models of evolution of oxygen isotope compositions in martian zircon.

Similar content being viewed by others

References

  1. Farquhar, J., Thiemens, M. H. & Jackson, T. Atmosphere–surface interactions on Mars: Δ17O measurements of carbonate from ALH 84001. Science 280, 1580–1582 (1998).

    Article  Google Scholar 

  2. Clayton, R. N. & Mayeda, T. K. Oxygen isotope studies of achondrites. Geochim. Cosmochim. Acta 60, 1999–2017 (1996).

    Article  Google Scholar 

  3. Karlsson, H. R., Clayton, R. N., Gibson, E. K. Jr & Mayeda, T. K. Water in SNC meteorites: Evidence for a martian hydrosphere. Science 255, 1409–1411 (1992).

    Article  Google Scholar 

  4. Farquhar, J. & Thiemens, M. H. Oxygen cycle of the martian atmosphere–regolith system: Δ17O of secondary phases in Nakhla and Lafayette. J. Geophys. Res. 105, 11991–11997 (2000).

    Article  Google Scholar 

  5. Humayun, M. et al. Origin and age of the earliest martian crust from meteorite NWA 7533. Nature 503, 513–516 (2013).

    Article  Google Scholar 

  6. Agee, C. B. et al. Unique meteorite from early Amazonian Mars: Water-rich basaltic breccia Northwest Africa 7034. Science 339, 780–785 (2013).

    Article  Google Scholar 

  7. Yin, Q-Z. et al. An Earth-like beginning for ancient Mars indicated by alkali-rich volcanism at 4.4 Ga. Lunar Planet Sci. XLXVI, abstr. #1320 (2014)

  8. Ziegler, K. et al. The unique NWA 7034 martian meteorite: Evidence for multiple oxygen isotope reservoirs. Lunar Planet Sci. XLXV, abstr. #2639 (2013)

  9. Romanek, C. et al. Oxygen isotopic record of silicate alteration in the Shergotty–Nakhla–Chassigny meteorite Lafayette. Meteorit. Planet. Sci. 33, 775–784 (1998).

    Article  Google Scholar 

  10. Valley, J. W. Oxygen isotopes in zircon. Rev. Min. Geochem. 53, 343–386 (2003).

    Article  Google Scholar 

  11. Thiemens, M. H. Mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283, 341–345 (1999).

    Article  Google Scholar 

  12. Lunine, J. I., Chambers, J., Morbidelli, A. & Leshin, L. A. The origin of water on Mars. Icarus 165, 1–8 (2003).

    Article  Google Scholar 

  13. Borg, L. E. et al. The age of the carbonates in martian meteorite ALH84001. Science 286, 90–94 (1999).

    Article  Google Scholar 

  14. Gale, N. H., Arden, J. W. & Hutchison, R. The chronology of the Nakhla achondritic meteorite. Earth Planet. Sci. Lett. 26, 195–206 (1975).

    Article  Google Scholar 

  15. Papanastassiou, D. A. & Wasserburg, G. J. Evidence for late formation and young metamorphism in the achondrite Nakhla. Geophys. Res. Lett. 1, 23–26 (1974).

    Article  Google Scholar 

  16. Podosek, F. A. Thermal history of the nakhlites by the 40Ar–39Ar method. Earth Planet. Sci. Lett. 19, 135–144 (1973).

    Article  Google Scholar 

  17. Shih, C. Y., Nyquist, L. E., Reese, Y. & Wiesmann, H. The chronology of the Nakhlite, Lafayette: Rb–Sr and Sm–Nd isotopic ages. Lunar Planet. Sci. XXIX, abstr. #1145 (1998)

  18. Webster, C. R. et al. Isotope ratios of H, C and O in CO2 and H2O of the martian atmosphere. Science 341, 260–263 (2013).

    Article  Google Scholar 

  19. Pepin, R. O. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991).

    Article  Google Scholar 

  20. Bjoraker, G. L., Mumma, M. J. & Larson, H. P. Isotopic abundance ratios for hydrogen and oxygen in the martian atmosphere. Bull. Am. Astron. Soc. 21, 991 (1989).

    Google Scholar 

  21. Krasnopolsky, V. A., Maillard, J. P., Owen, T. C., Toth, R. A. & Smith, M. D. Oxygen and carbon isotope ratios in the martian atmosphere. Icarus 192, 396–403 (2007).

    Article  Google Scholar 

  22. Lammer, H. et al. Outgassing history and escape of the martian atmosphere and water inventory. Space Sci. Rev. 174, 113–154 (2013).

    Article  Google Scholar 

  23. Jakosky, B. M. & Phillips, R. J. Mars’ volatile and climate history. Nature 412, 237–244 (2001).

    Article  Google Scholar 

  24. Güdel, M., Guinan, E. F. & Skinner, S. L. The X-ray sun in time: A study of the long-term evolution of coronae of solar-type stars. Astrophys. J. 483, 947–960 (1997).

    Article  Google Scholar 

  25. Ribas, I., Guinan, E. F., Güdel, M. & Audard, M. Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700 Å). Astrophys. J. 622, 680–694 (2005).

    Article  Google Scholar 

  26. Claire, M.W. et al. The evolution of solar flux from 0.1 nm to 160 μm: Quantitative estimates for planetary studies. Astrophys. J. 757, 95–107 (2012).

    Google Scholar 

  27. Elkins-Tanton, L. T. Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008).

    Article  Google Scholar 

  28. Carr, M. H. & Head, J. W. Geologic history of Mars. Earth Planet. Sci. Lett. 294, 185–203 (2010).

    Article  Google Scholar 

  29. Franchi, I. A., Wright, I. P. & Pillinger, C. T. The oxygen isotope composition of Earth and Mars. Meteorit. Planet. Sci. 34, 657–661 (1999).

    Article  Google Scholar 

  30. Rumble, D. & Irving, A. J. Dispersion of oxygen isotopic composition among 42 martian meteorites determined by laser fluorination: Evidence for assimilation of (ancient) altered crust. Lunar Planet Sci. XL, abstr. #2293 (2009)

Download references

Acknowledgements

This work has been supported by Knut and Alice Wallenberg Foundation and Swedish Research Council grants to A.A.N. and M.J.W and by grants from NASA to M.H. The Nordsim facility is operated as a joint Nordic infrastructure. This is Nordsim publication 378.

Author information

Authors and Affiliations

Authors

Contributions

A.A.N., M.H. and M.J.W. conceived the manuscript, directed the research and wrote the manuscript; R.H.H., J-P.L., M.G. and A.K. contributed to the interpretation of data and the revision of the manuscript; M.J.W. and A.A.N. performed oxygen isotope and U–Pb image analyses; B.Z. and C.F. prepared polished samples for this study; R.H.H. and B.Z. performed petrological studies; D.D., J-P.L. and B.Z. located and imaged zircon by scanning electron microscopy.

Corresponding author

Correspondence to A. A. Nemchin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2621 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemchin, A., Humayun, M., Whitehouse, M. et al. Record of the ancient martian hydrosphere and atmosphere preserved in zircon from a martian meteorite. Nature Geosci 7, 638–642 (2014). https://doi.org/10.1038/ngeo2231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing