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ABSTARCT:-   This paper examines the steady state behavior of unreliable server in a batch arrival queue with 

two phases of heterogeneous service along with Bernoulli schedule and N-policy. The server provides two kinds 

of services in succession, the first stage service (FSS) followed by second stage service (SSS). As soon as both 

services are completed, the server may take a vacation or may continue staying in the system. The server may 

break down during the service; the failure and repair times are assumed to follow a general distribution. By 

using the maximum entropy method (MEM), the approximate formulae for the probability distributions of the 

number of customers in the system have been derived, which are further used to obtain various system 

performance measures. A comparative analysis between approximate results established and exact results has 

also been performed. It is noticed that the maximum entropy approach provides reasonably good approximate 

solutions for practical purpose. 
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I. INTRODUCTION 

Information theory provides a constructive criterion for setting up probability distribution on the basis of 

partial knowledge, called the maximum entropy estimate. It is least biased estimate, possible on the given 

information. Jain and Singh (2000) employed MEM to analyze the optimal flow control of G/G/c finite capacity 

queue via diffusion process. Herrero (2002) proposed a direct method to compute the second moment and also 

for probability of customers being served in a busy period. The methodology of maximum entropy has been 

used by Guan et al. (2009) to characterize closed form expression for the state and blocking probabilities for 

threshold based discrete time queue.Wang et al. (2002) analyzed the N-policy M/G/1 queueing system with 

removable server by using maximum entropy. Jain and Dhakad (2003a) provided the steady state queue size 

distribution for G/G/1 queue by using maximum entropy approach. Moreover, Jain and Dhakad (2003b) 

provided the steady state queue size distribution for M
x
/G/1 queueing system with server breakdowns and 

general setup times. Entropy maximization and queuing network with priorities and blocking have been 

analyzed by Kouvatsos and Awan (2003). Maximum entropy principle is used by Wang et al. (2005), to derive 

approximate formulae for the steady state probability distribution of the queue length. Recently, Jain and Jain 

(2006) obtained approximate results for the queue size distribution for G/G/1 queue with vacation under N-

policy. A comparative analysis has been made between the approximate results and exact results for M
x
/G/1 

queueing system with server vacation by Ke and Lin (2006). A single unreliable server M
X
/G/1 queueing system 

with multiple vacations was considered by Wang et al. (2007). Wang and Huang (2009) analyzed a single 

removable and unreliable server queue and use maximum entropy approach to develop the approximate 

formulae for waiting time in the system. 

In this investigation, we have derived the approximate formulae for the expected system size and expected 

waiting time for an M
x
/G/1 queueing model with Bernoulli schedule vacations and repairable server. The 

organization of the paper is as follows. The model under consideration is described along with assumptions and 

limiting probabilities and governing equations in section 2. Various queueing characteristics along with queue 

length have been derived in section 3. Section 4 is devoted to Maximum Entropy Method (MEM). The 

approximate results for the expected queue size and expected waiting time are established in sections 5 and 6, 

respectively. A comparative analysis between the approximate and exact results is also performed. Numerical 

illustrations have been provided in next section 7. In the last section 8, the conclusions are made. 

 

II. MODELS DESCRIPTION 

We consider an M
X
/G/1 queueing system with the following assumptions: 
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 The customers arrive at the system according to a compound Poisson process with random batch size denoted 

by random variable ‘X’. 

 When N customers are accumulated in the system, the server starts service to the customers. 

 There is a single unreliable server which provides two kinds of general heterogeneous services in the 

sequence to the customers on a first come first served (FCFS) basis i.e. first stage service (FSS) followed by 

the second stage service (SSS). 

 As soon as the service of a customer is completed, the server may take a vacation with probability r or else 

with probability (1-r) he may continue servicing the next customer, if any, otherwise the system is turned off. 

 We assume that the service time random variable Si (i=1,2) of the i
th

 service follows a general probability law 

with Si(x) as the distribution function. We denote Laplace Stieltjes Transform (LST) of Si(x) by Si*(s) with 

finite moment E(Si
k
), k≥1, i=1,2. 

 The vacation time V of the server follows a general probability law with distribution function V(x), LST 

V*(s) and finite moment E(V
k
), k=1,2. 

 The server may breakdown while servicing the customers. When the server breaks down, it is sent for repair. 

The repair times are distributed with probability distribution function Gi(x), i=1,2 while server fails during i
th

 

phase service. Immediately after the server is repaired, it starts serving the customers. 

 Some other notations used for modeling purpose are as follows: 

 

  Arrival rate of the customers 

αi Failure rate of the server while rendering i
th

 (i=1,2) phase service 

i(x)  Service rate of the server for i
th

 (i=1,2) phase service 

v(x)  Vacation rate 

i(y)  Repair rate of the server while broken down during i
th

 (i=1,2) 

phase service 

V(x), v(x) Cumulative distribution function and density function of vacation time 

Bi(x), bi(x)  Cumulative distribution function and density function of service time (i=1,2), 

respectively 

Gi(x), gi(x) Cumulative distribution function and density function of repair time   

                             (i=1,2), respectively 

V*(s)  LST of V(x) 

B*i(s)  LST of Bi(x) 

Gi*(s), gi(s) LST of Gi(x), gi(x) 

 

Hazard rates are defined as 
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III. STEADY STATE EQUATIONS 

The Chapman Kolmogorov equations are constructed as follows: 
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These equations are to be solved subject to the following boundary conditions: 
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The normalizing equation is given by 
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Now we define some probability generating functions as follows: 
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IV. THE ANALYSIS 

Theorem 1: The partial joint generating functions when the server is busy with FSS and SSS, under breakdown 

while rendering service during FSS and SSS and on vacations respectively, are obtained by solving equations 

(1)- (14) 
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Proof: For proof see appendix A-I. 

 

Theorem 2: The marginal generating functions are 
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Proof: See appendix A-II. 

 

Theorem 3: The probability generating function of the customers in the queue is given by 

 

 
  zzbzbzXrvr

zbzbzXrvrzIz
zP






))(())(())((*)1(

))(())(())((1)()1(
)(

2

*

1

*

2

*

1

**




                                                        (27) 

 

Proof: See appendix A-III for proof. 

 

Corollary: If the system is in steady state, then 

Prob[The server is in idle state]=I(1)=1-λE[X]{rE[V]-E[B1](1+α1E[G1]) -E[B2](1+α2E[G2])                  (28)                                                        

                                                                                                                                                

Prob[The server is busy with FSS]=P1(1)=λE[X]E[S1]                                                                              (29) 

Prob[The server is busy with SSS]=P2(1)=λE[X]E[S2]                                                                              (30) 

Prob[The server is broken down while FSS]=R1(1)=α1λE[X]E[G1]                                                          (31) 

Prob[The server is broken down while SSS]=R2(1)=α2λE[X]E[G2]                                                          (32) 

Prob[The server is on vacation]=Q(1)=rλE[X]E[V]                                                                                   (33) 

 

Theorem 4: The expected number of customers in the system is 
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where  )1][]([)1][]([][][ 222111  GEBEGEBEVrEXE  . 

 

Proof: The number of customers in the system can be obtained by using )(lim
'

1 zPL z  . 
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L’Hospital rule is used repetitively to compute L. 

 

 

V. PRINCIPLE OF MAXIMUM ENTROPY 

In this section maximum entropy model is formulated in order to develop the steady state probabilities, 

by applying the method of entropy maximization. The steady state probabilities are defined as follows: 

I(n):   The probability that server is idle 

Pi(n):  The probability that there are n customers in the system and server provides    

           i
th

   (i=1,2) stage service 

Ri(n):  The probability that there are n customers in the system and server is under  

            broken down state while providing i
th

 (i=1,2) stage service 

Q(n):   The probability that the server is on vacation 

 

The entropy function Y can be formulated mathematically as 
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The maximum entropy solution for the M
x
/G/1 queueing system is obtained by maximizing (34) subject to the 

following constraints: 
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Expected number of customers in the system is given by L, as follows 

 







1
2121 )()()()()()(

n

LnQnRnRnPnPnIn                                                                     (40) 

where L is given by equation (34). 

 

Multiplying (36)-(39) by Lagrangian multipliers θ1, θ2, θ3, θ4, θ5, θ6, θ7 respectively, and the Lagrangian function 
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VI. MAXIMUM ENTROPY SOLUTION 

To find maximum entropy solutions I(n), P1(n), P2(n), R1(n), R2(n), Q(n), maximizing in (19) subject to 

constraint (20)-(25) is equivalent to maximizing (26). The maximum entropy solutions can be obtained by 

taking partial derivatives of H with respect to I(n) P1(n), P2(n), R1(n), R2(n), Q(n) and setting the results equal to 

zero. Now 
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7
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7
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7
7

)61(
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 n
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Let 
)1( i

i e





 , i=1,2,…,6 and  7
7





 e . 

By using this in equations (48)-(53), we obtain 

n
nI 71)(  ;

n
nP 721 )(  ;

n
nP 732 )(  ;

n
nR 741 )(  ;

n
nR 752 )(  ;

n
nQ 76)(             (54)                     

Substituting (50) in (35)-(37), we obtain 
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
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)1( 6




L                                                                                                                                                       (61) 

where  ][][][][][][ 221121 VrEGEGEBEBEXE   . 

From (61), we obtain 

L

L 



7                                                                                                                                                      (62) 
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After algebraic manipulation we obtain ψi (i=1,2,3,4,5,6) as follows: 

 
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Substituting the value of ψi, i=1,2,3,4,5,6 in (54), we get 
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VII. EXPECTED WAITING TIME IN THE QUEUE 
In this section, we derive the exact and approximate solutions for the expected waiting time in the system, as 

follows: 

 

(a) The exact waiting time in the queue: 

      The exact expected waiting time (W) can be obtained using Little’s formula, as 

][ XE

L
W


 , where L is given in equation (33). 

(b) The approximate expected waiting time in the queue: 

The approximate expected waiting time W

^

can be obtained as 
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(75) 

 

By applying the value of P1(n), P2(n), R1(n), R2(n), Q(n), we finally get 
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VIII. SENSITIVITY ANALYSIS 
In order to determine the accuracy of approximate results obtained by using MEM, numerical 

comparisons between exact waiting time (W) and approximate waiting time (W

^

) has been done. We consider 

batch size to be geometrically distributed, whereas service time is assumed to be generally distributed. For 

computation purpose, we set the input data as given below: 

Table 1: 1=6.0, 2=5.0, α1=0.02, α2=0.04, 1=3.0, 2=4.0,  =0.3, r=0.2, v=0.4 

Table 2: α1=0.05, α2=0.04, 1=3.0, 2=4.0, =0.4, r=0.7, v=0.4 

 

Using the above data, we perform a numerical experiment analysis by developing computer program in 

software MATLAB to calculate the exact waiting time (W) and approximate waiting time (W

^

).  All numerical 

results are summarized in table 1-2. 

 From table 1, it is seen that both W and W

^

 follow increasing trend with the increase in batch size. 

This is common phenomenon that can be seen in bulk queues. Table 2 displays a comparison of waiting times 

by varying the service rates 1 and 2. It is noticed that the increment of service rates results in decrease in 

waiting time for both exponential and gamma distributions. Relative percentage error for exponential 

distribution is 7-8% whereas 10-12% error has been noticed for gamma distribution.  

 

IX. CONCLUDING REMARKS 

Maximum entropy principle provides inverse methodology i.e. to evaluate queue size distribution in 

terms of known operational characteristics for analyzing the complex queueing systems. In this paper, we have 

applied maximum entropy method to develop closed form formulae for the probabilities and waiting time for an 

M
x
/G/1 queueing system with Bernoulli schedule vacations with unreliable server under N-policy. We have 

performed a comparative analysis between the approximate results obtained using maximum entropy principle 

and exact results obtained using generating function approach. 

 

X. APPENDIX 

 

A-I. Proof of theorem 1: 

 

Multiply equations (3)-(7) and (13)-(14) with appropriate power of z and add: 

  





0
11111 )(),,(),()()(),( dyyzyxRzxPzXxzxP

dx

d
                                     (A.1) 
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  





0
222222 )(),,(),()()(),( dyyzyxRzxPzXxzxP

dx

d
                                  (A.2) 

  0),,()()(),,( 11  zyxRzXyzyxR
dy

d
                                                                     (A.3) 

  0),,()()(),,( 222  zyxRzXyzyxR
dy

d
                                                                   (A.4) 

  0),()()(),(  zxQzXxzxQ
dx

d
                                                                                  (A.5) 

),(),0,( 111 zxPzxR                                                                                                                          (A.6) 

),(),0,( 222 zxPzxR                                                                                                                        (A.7) 

 

Equation15-21 gives 

)}(1]{)}(exp[{),0(),( 1111 xBxzzPzxP                                                                               (A.8)                

)}(1]{)}(exp[{),0(),( 2222 xBxzzPzxP                                                                            (A.9)          

)}(1]{)}(1(exp[{),0,(),,( 111 yGxzXzxRzyxR                                                            (A.10)      

)}(1]{)}(1(exp[{),0,(),,( 222 yGxzXzxRzyxR                                                          (A.11)    

)}(1]{)}(1(exp[{),0(),( xVxzXzQzxQ                                                                         (A.12) 

where ))((*)()( zXgzXz iiii     

 

A-II. Proof of Theorem 2: 

 

Similarly equations (9) - (12) yields 
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1
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*
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
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Therefore by using equation (A.14) and (A.15) in (A.13) 
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Integrating equation (A.8) with regard to z by parts and using equation (A.13) we get 
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Similarly 
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And 
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A-III. Proof of Theorem 3: 

 

PGF of the stationary queue size distribution at random epoch is given by 

 

)()()()()()()( 2121 zzQzRzRzPzPzIzP                                                              (A.22) 

 

Therefore 
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Now substituting the value of P1(0,z) from equation (26) in equation (A.22), we get  
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Let ψn (n=0,1,2,…,N-1) be the probability that a batch of customers finds at least n customers in the system 

during an idle period where ψn is given by the following recursive equation: 

))1(,...,2,1,0(
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inin   and ψ0=1                                                                 (A.25) 

Now In=I0 ψn, where I0 is normalizing constant, therefore 
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To determine I0, we use normalizing condition P(1)=1 and get 

I(z)=(1-Φ), thus 
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where Φ=rλE[X]E[V]-λE[B1]E[X](1+α1E[G1])-λE[B2]E[X](1+α2E[G2]) and 





1

0

N

n

n  is the mean number of 

batches arriving during the idle period. 
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E[X] 

M
x
/M/1 M

x
//1 

W  W

^

 
% error 

W  W

^

 
% error 

5 2.15 2.08 3.25 11.89 10.87 8.59 

6 2.17 2.09 3.68 12.75 11.63 8.78 

7 2.20 2.11 4.03 14.15 13.63 3.67 

8 2.23 2.12 4.93 15.30 14.45 5.55 

9 2.25 2.14 4.94 16.01 15.19 5.12 

Table 1: Effect of E[X] on W and W

^

for M
x
/M/1 and M

x
//1 models 

 

 

(1, 2) 

M
x
/M/1 M

x
//1 

W  W

^

 
% error 

W  W

^

 
% error 

(6,4) 1.53 1.45 8.63 1.59 1.43 10.91 

(8,4) 1.47 1.36 8.24 1.58 1.42 11.23 

(8,6) 1.49 1.38 8.00 1.57 1.40 11.63 

(6,8) 1.51 1.40 7.84 1.56 1.39 12.12 

(8,8) 1.52 1.41 7.75 1.55 1.37 12.73 

 

Table 2: Effect of  (1, 2) on W and W

^

for M
x
/M/1 and M

x
//1 models 

 

 


