DOI QR코드

DOI QR Code

Thermodynamic Analysis on Organic Rankine Cycle Using Exhaust Gas of the Chimney in a Resource Recovery Facility

폐기물 소각시설 굴뚝의 배기가스를 이용한 유기랭킨사이클 시스템의 열역학적 해석

  • Kim, Sunhee (School of Mechanical Engineering, Pusan National University) ;
  • Sung, Taehong (School of Mechanical Engineering, Pusan National University) ;
  • Kim, Kyung Chun (School of Mechanical Engineering, Pusan National University)
  • Received : 2017.06.04
  • Accepted : 2017.09.22
  • Published : 2017.10.30

Abstract

The amount and quality of waste heat from a resource recovery facility were measured. The temperature of exhaust gas was $176.6^{\circ}C$ and the amount of that was 13.8 kg/s. This research designed a waste heat recovery system whose working fluid is R-245fa. It simulated three study cases as follows. In simulation of a basic ORC system, the turbine power output and thermal efficiency were respectively 96.56 kW, 14.3%. In simulation of a superheater connection, 0.09% of efficiency could be improved due to the increase of enthalpy by overheating of working fluid, but the obtained output was decreased with 16.58kW because of the decrease of working fluid mass. In simulation of a process heater connection, efficiency was increased up to 38.51%.

폐기물 소각시설 굴뚝의 배기가스를 측정하여 활용 가능한 폐열의 양과 질을 확인한 바 그 양과 온도는 13.8kg/s, $176.6^{\circ}C$ 정도였다. 본 연구에서는 R-245fa를 작동유체로 하는 소각폐열회수 유기랭킨사이클(Organic Rankine Cycle: ORC) 발전시스템을 설계하고 다음과 같이 3가지 사례조건들을 시뮬레이션을 하였다. 기본 ORC 시스템에 따른 시뮬레이션에서는 출력과 총효율이 각각 96.56kW, 14.13% 임을 확인하였다. 과열기 추가에 따른 시뮬레이션에서는 작동유체 과열에 따른 엔탈피 증가로 0.09%의 출력상승을 얻을 수 있었으나, 작동유체의 감소로 16.58kW 만큼 적은 출력을 보였다. 그리고 공정열교환기 추가에 따른 시뮬레이션에서는 남은 배기가스의 열을 공정열수를 생산하여 총효율 38.51%까지 향상시켰다.

Keywords

References

  1. Liu, B.T., Chien, K.H. and Wang, C.C., "Effect of working fluids on organic Rankine cycle for waste heat recovery", Energy, 29(8), 1207-1217, (2004) https://doi.org/10.1016/j.energy.2004.01.004
  2. Madhawa Hettiarachchi, H.D., Golubovic, M., Worek, W.M. and Ikegami, Y., "Optimum design criteria for an organic Rankine cycle using low temperature geothermal heat sources", Energy, 32(9), 1698-1706, (2007) https://doi.org/10.1016/j.energy.2007.01.005
  3. Wei, D., Lu, X., Lu, Z., and Gu, J., "Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery", Energy conversion and Management, 48(4), 1113-1119, (2007) https://doi.org/10.1016/j.enconman.2006.10.020
  4. Quoilin, S., Broek, M.V.D., Declaye, S., Dewallef, P. and Lemort, V., "Techno-economic survey of Organic Rankine Cycle (ORC) systems", Renewable and Sustainable Energy Reviews, 22, 168-186, (2013) https://doi.org/10.1016/j.rser.2013.01.028
  5. Hung, T.C., Shai, T.Y. and Wang, S.K., "A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat", Energy, 22(7), 661-667, (1997) https://doi.org/10.1016/S0360-5442(96)00165-X
  6. Tchanche, B. F., Lambrinos, G., Frangoudakis, A. and Papadakis, G., "Low-grade heat convertsion into power using organic Rankine cycles - A review of various applications", Renewable and sustainable Energy Reviews, 15(8), 3963-3979, (2011) https://doi.org/10.1016/j.rser.2011.07.024
  7. Sung, T., Yoon, S., Kim, K. C., "A Mathematical Model of Hourly Solar Radiation in Varying Weather conditions for a Dynamic Simulation of the Solar Organic Rankine Cycle", energies, 8, 7058-7069, (2015) https://doi.org/10.3390/en8077058
  8. Kim, S., Sung, T., Kim, K. C., "Thermodynamic Performance Analysis of a Biogas-Fuelled Micro-Gas Turbine with a Bottoming Organic Rankine Cycle for Sewage Sludge and Food Waste Treatment Plants", energies, 10, 275; doi:10.3390/en10030275, (2017)
  9. Sung, T., Kim, K. C., "Thermodynamic analysis of a novel dual-loop organic Rankine cycle for engine waste heat and LNG cold", Applied thermal engineering, 100, 1031-1041, (2016) https://doi.org/10.1016/j.applthermaleng.2016.02.102
  10. Sung, T., Kim, K. C., "Performance characteristics of a 200-kW organic Rankine cycle system in a steel processing plant", Applied energy, 183, 623-635, (2016) https://doi.org/10.1016/j.apenergy.2016.09.018
  11. Kim, D.Y, Kim, Y. T., "Preliminary design and performance analysis of a radial inflow turbine for ocean thermal energy convertsion", Renewable Energy, 106, 255-263, (2017) https://doi.org/10.1016/j.renene.2017.01.038
  12. Kim, J.S., Kim, D.Y., Kim, Y.T., Kang, H.K., "Performance analysis of an organic Rankine cycle for ocean thermal energy conversion system according to the working fluid and the cycle", Journal of the Korean Society of Marine Engineering, 39, 9, 881-889, (2015) https://doi.org/10.5916/jkosme.2015.39.9.881
  13. Kim, J.S., Kim, D.Y., Kang, H.K., Kim, Y.T., "Performance analysis of an organic Rankine cycle for ocean thermal energy conversion system according to pinch point temperature difference", Journal of the Korean Society of Marine Engineering, 40, 6, 476-483, (2016) https://doi.org/10.5916/jkosme.2016.40.6.476
  14. Kim, D.Y., Kang, H.K., Kim, Y.T., "The development of a preliminary designing program for ORC radial inflow turbines and the design of the radial inflow turbine for the OTEC", Journal of the Korean Society of Marine Engineering, 38, 3, 276-284, (2014) https://doi.org/10.5916/jkosme.2014.38.3.276
  15. Saleh, B., Koglbauer, G., Wendland, J., and Fischer, J., "Working fluids for low-temperature organic Rankine cycles", Energy, 32, 1210-1221, (2007) https://doi.org/10.1016/j.energy.2006.07.001