搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用地球红外辐射的旋转飞行体姿态估计方法

于靖 卜雄洙 牛杰 王新征

引用本文:
Citation:

利用地球红外辐射的旋转飞行体姿态估计方法

于靖, 卜雄洙, 牛杰, 王新征

Attitude estimator for spinning aircraft using earth infrared radiation field

Yu Jing, Bu Xiong-Zhu, Niu Jie, Wang Xin-Zheng
PDF
导出引用
  • 针对导航控制系统对姿态测试技术多元化、新型化和低成本的要求, 提出了一种基于地球红外辐射的旋转飞行体姿态估计方法. 首先, 根据地球红外辐射的产生机理, 结合红外辐射在大气中的传播规律, 建立了地球红外辐射模型. 然后, 分析了旋转飞行体的运动特征, 构建了红外传感器的测量模型. 为了探索红外传感器的输出信号与旋转飞行体的姿态信息之间的内在联系, 研究了不同姿态角和视场角下的传感器输出信号特征. 最后, 为了提高旋转飞行体的姿态测试精度, 设计了基于三轴红外传感器的扩展卡尔曼滤波算法来估计姿态角和横滚角速度. 结果表明: 利用地球红外辐射场进行姿态测试的方法有效可行, 俯仰角估计误差在0.1, 横滚角估计误差在0.05, 横滚角速度估计误差在1 rad/s. 该姿态测量方法简单有效, 能够满足旋转飞行体的姿态测量要求.
    The continuous improvement in diversification, new-type orientation and low cost of navigation control system, the accurate measurement of the spinning aircraft flight attitude parameters has becomes a more and more urgent task. In view of the above problems, a novel attitude estimator for the spinning aircraft is proposed by using earth infrared radiation field. The attitude estimation system possesses several key advantages over the current designs in low cost, no need of moving parts, and being free from reliance on GPS or other state feedback. Firstly, the mechanism of earth infrared radiation field is described in detail, and an 8-14 m atmospheric window is selected as the study object. The land surface infrared radiation is calculated by the land surface temperature and emissivity. The sky infrared radiation is calculated through layered atmosphere by combing with the sky emissivity and infrared atmospheric transmittance. According to the calculations of land surface infrared radiation and sky infrared radiation, the mathematical model of earth infrared radiation field is established by combining with propagation law of infrared radiation in the atmosphere. Then the measurement model of thermopile sensors is derived, after analyzing the motion feature of spinning aircraft during the flight. The thermopile sensors convert the observed infrared radiation into an electrical signal well suited for onboard data acquisition. To explore the inner link between the thermopile sensor output and the spinning aircraft attitude information, the characteristics of the sensor output under different attitude angles and fields of view are studied. When the thermopile sensor characteristics are included, the fully developed model can be used to generate accurate sensor output as a function of attitude angle. Finally, the installation of the thermopile sensors on the spinning aircraft is designed, and the measurement model of onboard thermopile sensor is established. In order to improve the accuracy of attitude measurement, an extended Kalman filter is developed, which enables the estimating of real-time attitude angles and roll rate by using solely three-axis thermopile sensors as feedback. The result indicates that by using this high accurate algorithm, the pitch angle estimation error is within 0.02, the roll angle estimation error is within 0.1 and the roll rate estimation error is within 1 rad/s. The detection system is simple and practical, works stably, and can meet the requirements for spinning projectile attitude measurement. The attitude estimation system will provide a new method and theory for further developing the spinning aircraft state detection.
      通信作者: 卜雄洙, buxu105@mail.njust.edu.cn
    • 基金项目: 国家机电动态控制重点实验室基金(批准号: 9140C360203120C36134)和江苏省普通高校研究生科研创新计划(批准号: KYZZ_0115)资助的课题.
      Corresponding author: Bu Xiong-Zhu, buxu105@mail.njust.edu.cn
    • Funds: Project supported by the Foundation of the National Defense Science and Technology Key Laboratory of Mechanical and Electrical Engineering and Control, China (Grant No. 9140C360203120C36134) and the Program for Graduate Student Innovation of the Higher Education Institutions of Jiangsu Province, China (Grant No. KYZZ_0115).
    [1]

    Guo C, Cai H, van der Heijden G H M 2013 J. Navigat. 66 799

    [2]

    Zheng W, Hsu H T, Zhong M, Yun M J 2014 Chin. Phys. B 23 109101

    [3]

    Zhao G R, Huang J L, Su Y Q, Sun C 2015 Acta Phys. Sin. 64 210502 (in Chinese) [赵国荣, 黄婧丽, 苏艳琴, 孙聪 2015 物理学报 64 210502]

    [4]

    Nguyen T 2014 28th AIAA/USU Conference on Small Satellites Logan, USA, August 8-13, 2014 p1

    [5]

    Sun C M, Yuan Y, Zhang X B 2010 Acta Phys. Sin. 59 7523 (in Chinese) [孙成明, 袁艳, 张修宝 2010 物理学报 59 7523]

    [6]

    Li M, Jing W, Huang X 2012 J. Guidance, Control, and Dynamics 35 344

    [7]

    Su W, Hong T, Xu C, Hao P J 2014 J. Xi'an Jiaotong Univ. 48 116 (in Chinese) [苏威, 洪涛, 徐川, 郝培杰 2014 西安交通大学学报 48 116]

    [8]

    Egan G K, Taylor B 2007 Monash Univ. TR MECSE-2007 Melbourne, Australia, August 2-7, 2007 p847

    [9]

    Rogers J, Costello M 2012 Navigation 59 9

    [10]

    Rogers J, Costello M, Hepner D 2011 J. Guidance, Control, and Dynamics 34 688

    [11]

    Tokutake H, Kuribara M, Yuasa Y 2012 International Workshop on Instruction for Planetary Missions Greenbelt Maryland, USA, Octber 10-12, 2012 p1022

    [12]

    Xu L J, Liu T, Chen H X 2014 J. Chin. Inertial Technol. 22 475 (in Chinese) [续立军, 刘涛, 陈海昕 2014 中国惯性技术学报 22 475]

    [13]

    Li X Y, Ma C L, Zhi W 2014 Transducer and Microsystem Technologies 33 101 (in Chinese) [李晓雨, 马春林, 支炜 2014 传感器与微系统 33 101]

    [14]

    Gillespie A 2014 Encyclopedia of Remote Sensing(Vol. 1) (New York: Springer New York) pp303-312

    [15]

    Fang Y Q, Fan X, Cheng Z D, Zhu B, Deng P, Zhang F Q 2013 Laser Infrared 43 896 (in Chinese) [方义强, 樊祥, 程正东, 朱斌, 邓潘, 张发强 2013 激光与红外 43 896]

    [16]

    Ma G, Zhang P, Qi C L, Xu N, Dong C H 2014 Acta Phys. Sin. 63 179503 (in Chinese) [马刚, 张鹏, 漆成莉, 徐娜, 董超华 2014 物理学报 63 179503]

    [17]

    Berger X, Bathiebo J 2003 Renewable Energy 28 1925

  • [1]

    Guo C, Cai H, van der Heijden G H M 2013 J. Navigat. 66 799

    [2]

    Zheng W, Hsu H T, Zhong M, Yun M J 2014 Chin. Phys. B 23 109101

    [3]

    Zhao G R, Huang J L, Su Y Q, Sun C 2015 Acta Phys. Sin. 64 210502 (in Chinese) [赵国荣, 黄婧丽, 苏艳琴, 孙聪 2015 物理学报 64 210502]

    [4]

    Nguyen T 2014 28th AIAA/USU Conference on Small Satellites Logan, USA, August 8-13, 2014 p1

    [5]

    Sun C M, Yuan Y, Zhang X B 2010 Acta Phys. Sin. 59 7523 (in Chinese) [孙成明, 袁艳, 张修宝 2010 物理学报 59 7523]

    [6]

    Li M, Jing W, Huang X 2012 J. Guidance, Control, and Dynamics 35 344

    [7]

    Su W, Hong T, Xu C, Hao P J 2014 J. Xi'an Jiaotong Univ. 48 116 (in Chinese) [苏威, 洪涛, 徐川, 郝培杰 2014 西安交通大学学报 48 116]

    [8]

    Egan G K, Taylor B 2007 Monash Univ. TR MECSE-2007 Melbourne, Australia, August 2-7, 2007 p847

    [9]

    Rogers J, Costello M 2012 Navigation 59 9

    [10]

    Rogers J, Costello M, Hepner D 2011 J. Guidance, Control, and Dynamics 34 688

    [11]

    Tokutake H, Kuribara M, Yuasa Y 2012 International Workshop on Instruction for Planetary Missions Greenbelt Maryland, USA, Octber 10-12, 2012 p1022

    [12]

    Xu L J, Liu T, Chen H X 2014 J. Chin. Inertial Technol. 22 475 (in Chinese) [续立军, 刘涛, 陈海昕 2014 中国惯性技术学报 22 475]

    [13]

    Li X Y, Ma C L, Zhi W 2014 Transducer and Microsystem Technologies 33 101 (in Chinese) [李晓雨, 马春林, 支炜 2014 传感器与微系统 33 101]

    [14]

    Gillespie A 2014 Encyclopedia of Remote Sensing(Vol. 1) (New York: Springer New York) pp303-312

    [15]

    Fang Y Q, Fan X, Cheng Z D, Zhu B, Deng P, Zhang F Q 2013 Laser Infrared 43 896 (in Chinese) [方义强, 樊祥, 程正东, 朱斌, 邓潘, 张发强 2013 激光与红外 43 896]

    [16]

    Ma G, Zhang P, Qi C L, Xu N, Dong C H 2014 Acta Phys. Sin. 63 179503 (in Chinese) [马刚, 张鹏, 漆成莉, 徐娜, 董超华 2014 物理学报 63 179503]

    [17]

    Berger X, Bathiebo J 2003 Renewable Energy 28 1925

  • [1] 冯婕, 崔益豪, 李豫东, 文林, 郭旗. CMOS有源像素传感器辐射损伤对星敏感器星图识别影响机理与识别算法. 物理学报, 2022, 71(18): 184208. doi: 10.7498/aps.71.20220894
    [2] 王浩, 曹珊珊, 苏俊豪, 徐海涛, 王震, 郑加金, 韦玮. 基于双包层光纤布拉格光栅传感器的锂电池组温度场监控. 物理学报, 2022, 71(10): 104207. doi: 10.7498/aps.71.20212302
    [3] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [4] 朱栋, 徐晗, 周寅, 吴彬, 程冰, 王凯楠, 陈佩军, 高世腾, 翁堪兴, 王河林, 彭树萍, 乔中坤, 王肖隆, 林强. 基于扩展卡尔曼滤波算法的船载绝对重力测量数据处理. 物理学报, 2022, 71(13): 133702. doi: 10.7498/aps.71.20220071
    [5] 丁子平, 廖健飞, 曾泽楷. 基于表面等离子体共振的新型超宽带微结构光纤传感器研究. 物理学报, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [6] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [7] 王兴生, 马彦明, 高勋, 林景全. 纳秒脉冲激光诱导空气等离子体的近红外辐射特性. 物理学报, 2020, 69(2): 029502. doi: 10.7498/aps.69.20190753
    [8] 祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤. 基于十字连通形环形谐振腔金属-介质-金属波导的折射率传感器和滤波器. 物理学报, 2018, 67(19): 197301. doi: 10.7498/aps.67.20180758
    [9] 刘昱, 任国斌, 靳文星, 吴越, 杨宇光, 简水生. 基于模场自积增强检测的光纤声光旋转传感器. 物理学报, 2018, 67(1): 014208. doi: 10.7498/aps.67.20171525
    [10] 李杰, 李蒙蒙, 孙立朋, 范鹏程, 冉洋, 金龙, 关柏鸥. 保偏微纳光纤倏逝场传感器. 物理学报, 2017, 66(7): 074209. doi: 10.7498/aps.66.074209
    [11] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究. 物理学报, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [12] 孙健, 刘伟强. 高超声速飞行器热管冷却前缘结构一体化建模分析. 物理学报, 2013, 62(7): 074401. doi: 10.7498/aps.62.074401
    [13] 冯李航, 曾捷, 梁大开, 张为公. 契形结构光纤表面等离子体共振传感器研究. 物理学报, 2013, 62(12): 124207. doi: 10.7498/aps.62.124207
    [14] 张喆, 柳倩, 祁志美. 基于金银合金薄膜的近红外表面等离子体共振传感器研究. 物理学报, 2013, 62(6): 060703. doi: 10.7498/aps.62.060703
    [15] 陈卫东, 刘要龙, 朱奇光, 陈颖. 基于改进雁群PSO算法的模糊自适应扩展卡尔曼滤波的SLAM算法. 物理学报, 2013, 62(17): 170506. doi: 10.7498/aps.62.170506
    [16] 陈林辉, 饶长辉. 点源信标相关哈特曼-夏克波前传感器光斑偏移测量误差分析. 物理学报, 2011, 60(9): 090701. doi: 10.7498/aps.60.090701
    [17] 徐新智, 郭静波. 基于状态估计的混沌直扩信号联合均衡与解调. 物理学报, 2011, 60(2): 020510. doi: 10.7498/aps.60.020510
    [18] 盛峥. 扩展卡尔曼滤波和不敏卡尔曼滤波在实时雷达回波反演大气波导中的应用. 物理学报, 2011, 60(11): 119301. doi: 10.7498/aps.60.119301
    [19] 郝鹏, 吴一辉, 张平. 纳米金表面修饰与表面等离子体共振传感器的相互作用研究. 物理学报, 2010, 59(9): 6532-6537. doi: 10.7498/aps.59.6532
    [20] 庄须叶, 刘永顺, 王淑荣, 吴一辉, 张平. 基于微加工工艺的光纤消逝场传感器及其长度特性研究. 物理学报, 2009, 58(4): 2501-2506. doi: 10.7498/aps.58.2501
计量
  • 文章访问数:  5357
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-14
  • 修回日期:  2016-01-19
  • 刊出日期:  2016-04-05

/

返回文章
返回