搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

170GHz兆瓦级同轴回旋振荡管的分析计算

覃觅觅 罗勇 杨阔 黄勇

引用本文:
Citation:

170GHz兆瓦级同轴回旋振荡管的分析计算

覃觅觅, 罗勇, 杨阔, 黄勇

Analysis and calculation of a 170 GHz megawatt-level coaxial gyrotron

Qin Mi-Mi, Luo Yong, Yang Kuo, Huang Yong
PDF
导出引用
  • 回旋管是最有希望应用于正在实施的国际热核实验反应堆计划的微波源器件,然而研究设计符合要求的回旋管还存在很多困难需要解决. 对170 GHz兆瓦级光滑同轴回旋管的注-波互作用进行了研究. 选取模式谱相对稀疏的TE31,12作为工作模式,利用Matlab编制源程序,计算了同轴回旋管的注-波耦合系数、起振电流.在考虑电子速度零散、腔壁电阻率和单模近似的基础上,对光滑同轴谐振腔的优化设计和注-波互作用进行了仿真,给出了磁场、电压、电流和内导体倾角等参量与回旋管效率的关系.结果表明,电压和磁场对回旋管效率影响较大,电子速度零散对回旋管效率影响较小,因而可降低电子枪的设计要求.此外,优化内导体倾角和同轴谐振腔结构参数可提高注-波互作用效率,降低电子速度零散对互作用效率的影响,获得了约50%的电子效率及1.7 MW输出功率.
    Gyrotrons are the most promising microwave source devices that can be used in the International Thermonuclear Experimental Reactor, but there are many difficulties to be solved in study and design of gyrotrons to meet the requirements. In this paper, the beam-wave interactions of a 170 GHz megawatt-level smooth-wall coaxial gyrotron are studied numerically. In order to attain high efficiency and stable radiation, TE31,12 mode that lies in a relative sparse spectrum is selected as the operating mode, and the beam-wave coupling coefficient and start oscillation current are calculated by a set of source codes developed by Matlab. Taking into account the electronic velocity spread and cavity wall resistivity, and based on a single-mode approximation, the optimization design and simulation of beam-wave interaction of a 170 GHz megawatt smooth-wall coaxial gyrotron have been fulfilled. The relationships between efficiency and magnetic field, and the voltage, current, taper angle of insert, and other parameters are presented. Results show that the voltage and magnetic field have great influence on efficiency; however, the current and velocity spread do change slightly, thus reduce the requirements of electron gun design. In addition, the optimized taper angle of insert and coaxial cavity geometry parameters can improve the efficiency, reduce the impact of velocity spread on efficiency, and can achieve an electronic efficiency around 50% and an output power 1.7 MW.
    • 基金项目: 国家自然科学基金(批准号:G0501040161101040)和四川省教育厅科研计划(批准号:13ZB0034)资助课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. G0501040161101040) and the Scientific Research Program of Education Bureau of Sichuan Province, China (Grant No. 13ZB0034).
    [1]

    Dumbrajs O, Nusinovich G S 2004 IEEE Trans. Plasma Sci. 32 934

    [2]

    Piosczyk B, Dammertz G, Dumbrajs O, Kartikeyan M V, Thumm M K, Yang X K 2004 IEEE Trans. Plasma Sci. 32 853

    [3]

    Read M E, Nusinovich G S, Dumbrajs O, Bird G, Hogge J P, Kreischer K, Blank M 1996 IEEE Trans. Plasma Sci. 24 586

    [4]

    Iatron C T, Braz O, Dammertz G, Kern S, Kuntze M, Piosczyk B, Thumm M 1997 IEEE Trans. Plasma Sci. 25 470

    [5]

    Piosczyk B, Dammertz G, Dumbrajs O, Drumm O, Illy S, Jin J, Thumm M 2004 IEEE Trans. Plasma Sci. 32 413

    [6]

    Kartikeyan M V, Borie E, Thumm M K A 2004 Gyrotrons: High-power Microwave and Millimeter Wave Technology (New York: Spring-verlag Berlin Heidelberg) p176

    [7]

    Huang H J 1964 Microwave Principle (Beijing: Science Press) p177 (in Chinese) [黄宏嘉 1964 微波原理 (北京: 科学出版社) 第177页]

    [8]

    Liu R, Li H F 2011 J. Electron. Sci. Technol. 9 221

    [9]

    Qin M M, Luo Y, Yang S C, Wang J X 2013 High Power Laser Particle Beams 25 427 (in Chinese)[覃觅觅, 罗勇, 杨仕超, 王建勋 2013 强激光与粒子束 25 427]

    [10]

    Fliflet A W, Read M E, Chu K R, Seeley R 1982 Int. J. Electron. 53 505

    [11]

    Kong Y Y, Zhang S C 2011 Acta Phys. Sin. 60 095201 (in Chinese)[孔艳岩, 张世昌 2011 物理学报 60 095201]

    [12]

    Wu J, Xiao C Y 2010 Chin. Phys. B 19 044101

    [13]

    Luo J R, Cui J, Zhu M, Guo W 2013 Chin. Phys. B 22 067803

    [14]

    Li H F, Du P Z, Yang S W, Xie Z L, Zhou X L, Wan H R, Huang Y 2000 Acta Phys. Sin. 49 312 (in Chinese)[李宏福, 杜品忠, 杨仕文, 谢仲怜, 周晓岚, 万洪蓉, 黄勇 2000 物理学报 49 312]

    [15]

    Chu K R, Lin A T 1988 IEEE Trans. Plasma Sci. 16 90

    [16]

    Chu K R, Chen H Y, Hung C L, Chang T H, Barnett L R, Chen S H, Yang T T, Dialetis D J 1999 IEEE Trans. Plasma Sci. 27 391

    [17]

    Kumar N, Singh U, Singh T P, Sinha A K 2011 J. Infrared Millim. THz Waves 32 186

    [18]

    Pu R F, Nusinovich G S, Sinitsyn O V, Antonsen Jr T M 2011 Phys. Plasmas 18 023107

    [19]

    Advani R, Hogge J P, Kreischer K E, Pedrozzi M, Read M E, Sirigiri J R, Temkin R J 2001 IEEE Trans. Plasma Sci. 29 943

    [20]

    Beringer M H, Kern S, Thumm M 2013 IEEE Trans. Plasma Sci. 41 853

  • [1]

    Dumbrajs O, Nusinovich G S 2004 IEEE Trans. Plasma Sci. 32 934

    [2]

    Piosczyk B, Dammertz G, Dumbrajs O, Kartikeyan M V, Thumm M K, Yang X K 2004 IEEE Trans. Plasma Sci. 32 853

    [3]

    Read M E, Nusinovich G S, Dumbrajs O, Bird G, Hogge J P, Kreischer K, Blank M 1996 IEEE Trans. Plasma Sci. 24 586

    [4]

    Iatron C T, Braz O, Dammertz G, Kern S, Kuntze M, Piosczyk B, Thumm M 1997 IEEE Trans. Plasma Sci. 25 470

    [5]

    Piosczyk B, Dammertz G, Dumbrajs O, Drumm O, Illy S, Jin J, Thumm M 2004 IEEE Trans. Plasma Sci. 32 413

    [6]

    Kartikeyan M V, Borie E, Thumm M K A 2004 Gyrotrons: High-power Microwave and Millimeter Wave Technology (New York: Spring-verlag Berlin Heidelberg) p176

    [7]

    Huang H J 1964 Microwave Principle (Beijing: Science Press) p177 (in Chinese) [黄宏嘉 1964 微波原理 (北京: 科学出版社) 第177页]

    [8]

    Liu R, Li H F 2011 J. Electron. Sci. Technol. 9 221

    [9]

    Qin M M, Luo Y, Yang S C, Wang J X 2013 High Power Laser Particle Beams 25 427 (in Chinese)[覃觅觅, 罗勇, 杨仕超, 王建勋 2013 强激光与粒子束 25 427]

    [10]

    Fliflet A W, Read M E, Chu K R, Seeley R 1982 Int. J. Electron. 53 505

    [11]

    Kong Y Y, Zhang S C 2011 Acta Phys. Sin. 60 095201 (in Chinese)[孔艳岩, 张世昌 2011 物理学报 60 095201]

    [12]

    Wu J, Xiao C Y 2010 Chin. Phys. B 19 044101

    [13]

    Luo J R, Cui J, Zhu M, Guo W 2013 Chin. Phys. B 22 067803

    [14]

    Li H F, Du P Z, Yang S W, Xie Z L, Zhou X L, Wan H R, Huang Y 2000 Acta Phys. Sin. 49 312 (in Chinese)[李宏福, 杜品忠, 杨仕文, 谢仲怜, 周晓岚, 万洪蓉, 黄勇 2000 物理学报 49 312]

    [15]

    Chu K R, Lin A T 1988 IEEE Trans. Plasma Sci. 16 90

    [16]

    Chu K R, Chen H Y, Hung C L, Chang T H, Barnett L R, Chen S H, Yang T T, Dialetis D J 1999 IEEE Trans. Plasma Sci. 27 391

    [17]

    Kumar N, Singh U, Singh T P, Sinha A K 2011 J. Infrared Millim. THz Waves 32 186

    [18]

    Pu R F, Nusinovich G S, Sinitsyn O V, Antonsen Jr T M 2011 Phys. Plasmas 18 023107

    [19]

    Advani R, Hogge J P, Kreischer K E, Pedrozzi M, Read M E, Sirigiri J R, Temkin R J 2001 IEEE Trans. Plasma Sci. 29 943

    [20]

    Beringer M H, Kern S, Thumm M 2013 IEEE Trans. Plasma Sci. 41 853

  • [1] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展. 物理学报, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [2] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展. 物理学报, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [3] 李倩文, 李莹, 张荣, 卢灿灿, 白龙. 线性与非线性传热过程的Curzon-Ahlborn热机在任意功率时的效率. 物理学报, 2017, 66(13): 130502. doi: 10.7498/aps.66.130502
    [4] 赵丽梅, 张国锋. 带有Dzyaloshinski-Mariya相互作用的两比特纠缠量子Otto热机和量子Stirling热机. 物理学报, 2017, 66(24): 240502. doi: 10.7498/aps.66.240502
    [5] 郑世燕. 以广义Redlich-Kwong气体为工质的不可逆回热式斯特林热机循环输出功率和效率. 物理学报, 2014, 63(17): 170508. doi: 10.7498/aps.63.170508
    [6] 肖尧, 郑建风. 复杂交通运输网络上的拥挤与效率问题研究. 物理学报, 2013, 62(17): 178902. doi: 10.7498/aps.62.178902
    [7] 马俊建, 朱小芳, 金晓林, 胡玉禄, 李建清, 杨中海, 李斌. 回旋速调管放大器时域非线性理论与模拟. 物理学报, 2012, 61(20): 208402. doi: 10.7498/aps.61.208402
    [8] 李飞, 肖刘, 刘濮鲲, 袁广江, 易红霞, 万晓声. 行波管中多级降压收集极效率评估的研究. 物理学报, 2012, 61(10): 102901. doi: 10.7498/aps.61.102901
    [9] 段羽, 陈平, 赵毅, 刘式墉. 新型有机白光器件的初步研究. 物理学报, 2011, 60(7): 077805. doi: 10.7498/aps.60.077805
    [10] 周庆, 陈钢, 胡月. 一个用简单物理模型构建的加密系统. 物理学报, 2011, 60(4): 044701. doi: 10.7498/aps.60.044701
    [11] 徐勇, 罗勇, 熊彩东, 李宏福, 邓学, 蒲友雷, 王晖, 王建勋, 鄢然. Kα波段TE01模基波回旋速调放大器的设计与实验. 物理学报, 2011, 60(4): 048403. doi: 10.7498/aps.60.048403
    [12] 姜文龙, 丛林, 孟昭晖, 汪津, 韩强, 孟凡超, 王立忠, 丁桂英, 张刚. 室温下磁场对基于Alq3的有机电致发光器件的影响. 物理学报, 2010, 59(5): 3571-3576. doi: 10.7498/aps.59.3571
    [13] 何俊, 魏彦玉, 宫玉彬, 段兆云, 王文祥. Ka波段曲折双脊波导行波管的研究. 物理学报, 2010, 59(4): 2843-2849. doi: 10.7498/aps.59.2843
    [14] 赵红东, 张卫华, 李文超, 刘会丽, 孙梅. 电流孔的尺寸对双氧化限制垂直腔面发射激光器阈值的影响. 物理学报, 2010, 59(6): 3948-3952. doi: 10.7498/aps.59.3948
    [15] 汪津, 华杰, 丁桂英, 常喜, 张刚, 姜文龙. 磁场作用下的有机电致发光. 物理学报, 2009, 58(10): 7272-7277. doi: 10.7498/aps.58.7272
    [16] 孙海燕, 焦重庆, 罗积润. 回旋行波放大器输出端反射对注-波互作用的影响. 物理学报, 2009, 58(2): 925-929. doi: 10.7498/aps.58.925
    [17] 雷双瑛, 沈 波, 张国义. AlxGa1-xN/GaN双量子阱的结构和掺杂浓度对子带间跃迁波长和吸收系数的影响. 物理学报, 2008, 57(4): 2386-2391. doi: 10.7498/aps.57.2386
    [18] 王 军, 魏孝强, 饶海波, 成建波, 蒋亚东. 基于铱配合物材料的高效高稳定性有机发光二极管. 物理学报, 2007, 56(2): 1156-1161. doi: 10.7498/aps.56.1156
    [19] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [20] 陈宝振, 黄祖洽. 飞秒强激光在充气毛细管中产生三次谐波的效率. 物理学报, 2005, 54(1): 113-116. doi: 10.7498/aps.54.113
计量
  • 文章访问数:  4780
  • PDF下载量:  746
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-24
  • 修回日期:  2014-01-05
  • 刊出日期:  2014-03-05

/

返回文章
返回